993 resultados para KINETIC CHAIN EXERCISES
Resumo:
The purpose of this study was to correlate the trochlear shape and patellar tilt angle and lateral patellar displacement at rest and maximal voluntary isometric contraction (MVIC) exercises during open (OKC) and closed kinetic chain (CKC) in subjects with and without anterior knee pain. Subjects were all women, 20 who were clinically healthy and 19 diagnosed with anterior knee pain. All subjects were evaluated and subjected to magnetic resonance exams during OKC and CKC exercise with the knee placed at 15, 30, and 45 degrees of flexion. The parameters evaluated were sulcus angle, patellar tilt angle and patellar displacement using bisect offset. Pearson's r coefficient was used, with p < .05. Our results revealed in knee pain group during CKC and OKC at 15 degrees that the increase in the sulcus angle is associated with a tilt increase and patellar lateral displacement. Comparing sulcus angle, patellar tilt angle and bisect offset values between MVIC in OKC and CKC in the knee pain group, it was observed that patellar tilt angle increased in OKC only with the knee flexed at 30 degrees. Based on our results, we conclude that reduced trochlear depth is correlated with increased lateral patellar tilt and displacement during OKC and CKC at 15 degrees of flexion in people with anterior knee pain. By contrast, 30 degrees of knee flexion in CKC is more recommended in rehabilitation protocols because the patella was more stable than in other positions.
Resumo:
Purpose: To examine the relationship between hip abductor muscle (HABD) strength and the magnitude of pelvic drop (MPD) for patients with non-specific low back pain (NSLBP) and controls (CON) prior to and following a 3-week HABD strengthening protocol. At baseline, we hypothesized that NSLBP patients would exhibit reduced HABD strength and greater MPD compared to CON. Following the protocol, we hypothesized that strength would increase and MPD would decrease. Relevance: The Trendelenburg test (TT) is a common clinical test used to examine the ability of the HABD to maintain horizontal pelvic position during single limb stance. However, no study has specifically tested this theory. Moreover, no study has investigated the relationship between HABD strength and pelvic motion during walking or tested whether increased HABD strength would reduce the MPD. Methods: Quasi-experimental with 3-week exercise intervention. Fifteen NSLBP patients (32.5yrs,range 21-51yrs; VAS baseline: 5.3cm) and 10 CON (29.5yrs,range 22-47yrs) were recruited. Isometric HABD strength was measured using a force dynamometer and the average of three maximal voluntary contractions were normalized to body mass (N/kg). Two-dimensional MPD (degrees) was measured using a 60 Hz camera and was derived from two retroreflective-markers placed on the posterior superior iliac spines. MPD was measured while performing the static TT and while walking and averaged over 10 consecutive footfalls. NSLBP patients completed a 3-week HABD strengthening protocol consisting of 2 open-kinetic-chain exercises then all measures were repeated. Non-parametric analysis was used for group comparisons and correlation analysis. Results: At baseline, the NSLBP patients demonstrated 31% reduced HABD strength (mean=6.6 N/kg) compared to CON (mean=9.5 N/kg: p=0.03) and no significant differences in maximal pelvic frontal plane excursion while walking (NSLBP:mean=8.1°, CON:mean=7.1°: p=0.72). No significant correlations were measured between left HABD strength and right MPD (r=-0.37, p=0.11), or between right HABD strength and left MPD (r=-0.04, p=0.84) while performing the static TT. Following the 3-week strengthening protocol, NSLBP patients demonstrated a 12% improvement in strength (Post:mean=7.4 N/kg: p=0.02), a reduction in pain (VAS followup: 2.8cm), but no significant decreases in MPD while walking (p=0.92). Conclusions: NSLBP patients demonstrated reduced HABD strength at baseline and were able to increase strength and reduce pain in a 3-week period. However, despite increases in HABD strength, the NSLBP group exhibited similar MPD motion during the static TT and while walking compared to baseline and controls. Implications: The results suggest that the HABD alone may not be primarily responsible for controlling a horizontal pelvic position during static and dynamic conditions. Increasing the strength of the hip abductors resulted in a reduction of pain in NSLBP patients providing evidence for further research to identify specific musculature responsible for controlling pelvic motion.
Resumo:
FEHR, Guilherme Lotierso et al. Efetividade dos exercícios em cadeia cinética aberta e cadeia cinética fechada no tratamento da síndrome da dor femoropatelar. Revista Brasileira de Medicina do Esporte, [s.l], v. 12, n. 2, p.66-70, mar./abr. 2006. Bimestral. Disponível em:
Resumo:
The aim of the present study was to evaluate the use MRI to quantify the workload of gluteus medius (GM), vastus medialis (VM) and vastus lateralis (VL) muscles in different types of squat exercises. Fourteen female volunteers were evaluated, average age of 22 +/- 2 years, sedentary, without clinical symptoms, and without history of previous lower limb injuries. Quantitative MRI was used to analyze VM, VL and GM muscles before and after squat exercise, squat associated with isometric hip adduction and squat associated with isometric hip abduction. Multi echo images were acquired to calculate the transversal relaxation times (T2) before and after exercise. Mixed Effects Model statistical analysis was used to compare images before and after the exercise (Delta T2) to normalize the variability between subjects. Imaging post processing was performed in Matlab software. GM muscle was the least active during the squat associated with isometric hip adduction and VM the least active during the squat associated with isometric hip abduction, while VL was the most active during squat associated with isometric hip adduction. Our data suggests that isometric hip adduction during the squat does not increase the workload of VM, but decreases the GM muscle workload. Squat associated with isometric hip abduction does not increase VL workload.
Resumo:
FEHR, Guilherme Lotierso et al. Efetividade dos exercícios em cadeia cinética aberta e cadeia cinética fechada no tratamento da síndrome da dor femoropatelar. Revista Brasileira de Medicina do Esporte, [s.l], v. 12, n. 2, p.66-70, mar./abr. 2006. Bimestral. Disponível em:
Resumo:
FEHR, Guilherme Lotierso et al. Efetividade dos exercícios em cadeia cinética aberta e cadeia cinética fechada no tratamento da síndrome da dor femoropatelar. Revista Brasileira de Medicina do Esporte, [s.l], v. 12, n. 2, p.66-70, mar./abr. 2006. Bimestral. Disponível em:
Resumo:
Objectives: To investigate motor unit synchronization between medial and lateral vasti and whether such synchronization differs in closed and open chain tasks. Design: Electromyographic recordings of single motor unit action potentials were made from the vastus medialis obliquus (VMO) and multiunit recordings from vastus lateralis during isometric contractions at 30 degrees of knee flexion in closed and open chain conditions. Setting: Laboratory. Participants: Five volunteers with no history of knee pain (age, 30 +/- 3.32y). Interventions: Not applicable. Main Outcome Measure: The degree of synchronization between motor unit firing was evaluated by identifying peaks in the electromyographic averages of the vastus lateralis, triggered from motor unit action potentials in the VMO, and the proportion of power in the power spectral density of the triggered average at the firing frequency of the reference motor unit. The proportion of cases in which there was significant power and peaks in the triggered averages was calculated. Results: The proportion of trials with peaks in the triggered averages of the vastus lateralis electromyographic activity was greater than 61.5% in all tasks, and there was a significantly greater proportion of cases where power in the spectrum was greater than 7.5% (P = .01) for the closed chain condition. Conclusions: There was a high proportion of synchronized motor units between the 2 muscles during isometric contractions, with evidence for greater common drive between the VMO and vastus lateralis in closed chain tasks. This has implications for rehabilitation because it suggests that closed chain tasks may generate better coordination between the vasti muscles.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
Patellofemoral pain syndrome (PFPS) is described as anterior or retropatellar pain knee in the absence of other pathologies and is frequently associated with dysfunction of the vastus medialis oblique (VMO). However, several studies have demonstrated the inability to selectively activate this muscle through exercise. To evaluate the effect of Neuromuscular Electrical Stimulation (NMES) selective VMO in women with syndrome. We evaluated thirty-eight women: twenty in the control group (24.15 ± 2.60 years) and eighteen diagnosed with PFPS (25.56 ± 3.55 years). Both groups were evaluated before and after a protocol of electro stimulation. To measure for comparing groups before and after treatment, we assessed the extensor torque concentric and eccentric knee through an isokinetic dynamometer, the intensity (Root Mean Square - RMS) and the onset of activation (onset) of VMO compared to the vastus lateralis (VL) in two types of exercise: open and closed kinetic chain. . Statistical analysis was performed using SPSS 15.0, with a significance level of 5%. Results: Our data showed an increase in the intensity of activation (RMS) of the VMO muscle after NMES in both study groups. During concentric contraction the RMS of the VMO before the NMES was 105.69 ± 32.26 μV and after a single intervention was 122.10 ± 39.62 μV (p = 0.048) for the control group. In the group with PPS, we found a similar behavior, with RMS of the VMO before NMES of 96.25 ± 18.83 μV and 139.80 ± 65.88 μV after the intervention (p = 0.0001). However, there was no evidence in the RMS value of VL muscle. The onset was calculated by subtracting the onset of VL by the onset of VMO. For the group with PFPS, the onset before the intervention was -0.007 ± 0.14 ms, indicating a delay of the VMO relative to VL, and after NMES was 0.074 ± 0.09 ms (p = 0.016), showing an activation previous VMO to VL. The same occurred for the control group. We also observed that NMES increased knee extensor power during the concentric contraction in both groups. Before the intervention the mean power was 28.97 ± 9.01 W for the PPS group and after NMES was 34.38 ± 7.61 W (p = 0.0001). Conclusion: We observed an increase in electromyographic activity of the VMO and also an anticipatory effect of this muscle
Resumo:
To analyze strength and integrated electromyography (IEMG) data in order to determine the neuromuscular efficiency (NME) of the vastus lateralis (VL) and biceps femoris (BF) muscles in patients with anterior cruciate ligament (ACL) injuries, during the preoperative and postoperative periods; and to compare the injured limb at these two times, using the non-operated limb as a control. EMG data and BF and VL strength data were collected during three maximum isometric contractions in knee flexion and extension movements. The assessment protocol was applied before the operation and two months after the operation, and the NME of the BF and VL muscles was obtained. There was no difference in the NME of the VL muscle from before to after the operation. On the other hand, the NME of the BF in the non-operated limb was found to have increased, two months after the surgery. The NME provides a good estimate of muscle function because it is directly related to muscle strength and capacity for activation. However, the results indicated that two months after the ACL reconstruction procedure, at the time when loading in the open kinetic chain within rehabilitation protocols is usually started, the neuromuscular efficiency of the VL and BF had still not been reestablished.
Resumo:
Patella taping reduces pain ill individuals with patellofemoral pain (PFP), although the mechanism remains unclear. One possibility is that patella taping modifies vasti muscle activity via stimulation of cutaneous afferents. The aim of this study was to investigate the effect of stretching the skin over the patella on vasti Muscle activity in people with PFP. Electromyographic activity (EMG) of individual motor units in vastus medialis obliquus (VMO) was recorded via a needle electrode and from Surface electrodes placed over VMO and vastus lateralis (VL). A tape was applied to the skin directly over the patella and stretch was applied via the tape in three directions, while subjects maintained a gentle isometric knee extension effort at constant force. Recordings were made from five separate motor units in each direction. Stretch applied to the skin over the patella increased VMO surface EMG and was greatest with lateral stretch. There was no change in VL surface EMG activity. While there was no net increase in motor unit firing rate, it was increased in the majority of motor units during lateral stretch. Application of stretch to the skin over VMO via the tape can increase VMO activity, suggesting that cutaneous stimulation may be one mechanism by which patella taping produces a clinical effect. (c) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia
Resumo:
The desire to solve problems caused by socket prostheses in transfemoral amputees and the acquired success of osseointegration in the dental application has led to the introduction of osseointegration in the orthopedic surgery. Since its first introduction in 1990 in Gothenburg Sweden the osseointegrated (OI) orthopedic fixation has proven several benefits[1]. The surgery consists of two surgical procedures followed by a lengthy rehabilitation program. The rehabilitation program after an OI implant includes a specific training period with a short training prosthesis. Since mechanical loading is considered to be one of the key factors that influence bone mass and the osseointegration of bone-anchored implants, the rehabilitation program will also need to include some form of load bearing exercises (LBE). To date there are two frequently used commercially available human implants. We can find proof in the literature that load bearing exercises are performed by patients with both types of OI implants. We refer to two articles, a first one written by Dr. Aschoff and all and published in 2010 in the Journal of Bone and Joint Surgery.[2] The second one presented by Hagberg et al in 2009 gives a very thorough description of the rehabilitation program of TFA fitted with an OPRA implant. The progression of the load however is determined individually according to the residual skeleton’s quality, pain level and body weight of the participant.[1] Patients are using a classical bathroom weighing scale to control the load on the implant during the course of their rehabilitation. The bathroom scale is an affordable and easy-to-use device but it has some important shortcomings. The scale provides instantaneous feedback to the patient only on the magnitude of the vertical component of the applied force. The forces and moments applied along and around the three axes of the implant are unknown. Although there are different ways to assess the load on the implant for instance through inverse dynamics in a motion analysis laboratory [3-6] this assessment is challenging. A recent proof- of-concept study by Frossard et al (2009) showed that the shortcomings of the weighing scale can be overcome by a portable kinetic system based on a commercial transducer[7].
Resumo:
This study aimed at presenting the intra-tester reliability of the static load bearing exercises (LBEs) performed by individuals with transfemoral amputation (TFA) fitted with an osseointegrated implant to stimulate the bone remodelling process. There is a need for a better understanding of the implementation of these exercises particularly the reliability. The intra-tester reliability is discussed with a particular emphasis on inter-load prescribed, inter-axis and inter-component reliabilities as well as the effect of body weight normalisation. Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. Reliability of loading variables was assessed using intraclass correlation coefficients (ICCs) and percentage standard error of measurement values (%SEMs). The ICCs of all variables were above 0.9 and the %SEM values ranged between 0 and 87%. This study showed a high between-participants’ variance highlighting the lack of loading consistency typical of symptomatic population as well as a high reliability between the loading sessions indicating a plausible correct repetition of the LBE by the participants. However, these outcomes must be understood within the framework of the proposed experimental protocol.
Resumo:
The effects of adding bromoform (CHBr3) as a potential chain transfer agent in the photopolymerisation of acrylamide (AM) in aqueous solution have been studied both in terms of influencing the rate of polymerisation and the molecular weight of the polyacrylamide (PAM) formed. Using 4,4′-azo-bis(4-cyanopentanoic acid) (ACPA) as photoinitiator, two different CHBr3 concentrations as chain transfer agent were compared: 0.5 and 2.0 mol % (relative to AM), the higher of which was determined by the limit of CHBr3 water solubility. The results showed that CHBr3 was an effective chain transfer agent that could regulate the molecular weight of the PAM formed without seriously affecting the polymerisation rate. It is concluded that chain transfer to CHBr3occurs by both Br and H atom transfer although Br transfer is the more favoured due to the weaker C-Br bond. Furthermore, Br transfer leads to Br-terminated chains in which the terminal C-Br bond can re-dissociate leading to re-initiation and re-propagation of the same chain, thereby maintaining the polymerisation rate. Continuing studies into how this mechanism can be exploited in order to synthesize water-soluble block copolymers of potential biomedical importance are currently in progress.