961 resultados para Ionic-strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency due to enzyme hydrolysis of WS films and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing angle infrared spectroscopy (GA-FTIR) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength- and temperature-dependent. The WS films were partially removed by the action of enzyme, resulting thinner and smoother surfaces. The IR data suggested that hydrolysis-induced deformation did not occur onto the remnants salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers ( ≈ 68 Å) and the nodal zones. Stress sweep and creeprecovery measurements are used to relate the lack of linear viscoelastic domain to a mechanism of disentanglement of the fibers from their associations into fagots. The electrostatic interactions can be screened by addition of salt to induce a progressive evolution toward flocculation. SEM, UV absorbance, and SAXS study of the Bragg peak at large Q-values complete the investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV-visible spectra of polyaniline and its polyelectrolyte complexes show evidence for different degree of protonation when equilibrated with different ionic strength at a particular pH, due to the Donnan effect. For pure polyaniline, when the fixed charge on the film is positive, protonation is higher ionic strength whereas, when the polyaniline is doped with a polyelectrolyte resulting in a net negative fixed charge on the film, the protonation is less at higher ionic strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of aqueous Pb(II) and Cu(II) on α-quartz was studied as a function of time, system surface area, and chemical speciation. Experimental systems contained sodium as a major cation, hydroxide, carbonate, and chloride as major anions, and covered the pH range 4 to 8. In some cases citrate and EDTA were added as representative organic complexing agents. The adsorption equilibria were reached quickly, regardless of the system surface area. The positions of the adsorption equilibria were found to be strongly dependent on pH, ionic strength and concentration of citrate and EDTA. The addition of these non-adsorbing ligands resulted in a competition between chelation and adsorption. The experimental work also included the examination of the adsorption behavior of the doubly charged major cations Ca(II) and Mg(II) as a function of pH.

The theoretical description of the experimental systems was obtained by means of chemical equilibrium-plus-adsorption computations using two adsorption models: one mainly electrostatic (the James-Healy Model), and the other mainly chemical (the Ion Exchange-Surface Complex Formation Model). Comparisons were made between these two models.

The main difficulty in the theoretical predictions of the adsorption behavior of Cu(II) was the lack of the reliable data for the second hydrolysis constant(*β_2) The choice of the constant was made on the basis of potentiometric titratlons of Cu^(2+)

The experimental data obtained and the resulting theoretical observations were applied in models of the chemical behavior of trace metals in fresh oxic waters, with emphasis on Pb(II) and Cu(II).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption behavior of C.I. Reactive Blue 2, C.I. Reactive Red 4, and C.I. Reactive Yellow 2 from aqueous solution onto activated carbon was investigated under various experimental conditions. The adsorption capacity of activated carbon for reactive dyes was found to be relatively high. At pH 7.0 and 298 K, the maximum adsorption capacity for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes was found to be 0.27, 0.24, and 0.11 mmol/g, respectively. The shape of the adsorption isotherms indicated an L2-type isotherm according to the Giles and Smith classification. The experimental adsorption data showed good correlation with the Langmuir and Ferundlich isotherm models. Further analysis indicated that the formation of a complete monolayer was not achieved, with the fraction of surface coverage found to be 0.45, 0.42, and 0.22 for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes, respectively. Experimental data indicated that the adsorption capacity of activated carbon for the dyes was higher in acidic rather than in basic solutions, and further indicated that the removal of dye increased with increase in the ionic strength of solution, this was attributed to aggregation of reactive dyes in solution. Thermodynamic studies indicated that the adsorption of reactive dyes onto activated carbon was an endothermic process. The adsorption enthalpy (?H) for C.I. Reactive Blue 2 and C.I. Reactive Yellow 2 dyes were calculated at 42.2 and 36.2 kJ/mol, respectively. The negative values of free energy (?G) determined for these systems indicated that adsorption of reactive dyes was spontaneous at the temperatures under investigation (298-328 K). © 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper advances findings of Yang et al. 2010 and reports on how slight changes in pH or Ionic strength can significantly alter particle behaviour in porous media, when humic acids have been deposited beforehand. .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates of rapair of pBR 322 plasmid DNA radicals by thiols of varying net charge (Z) at pH 7 and physiological ionic strength were measured using the oxygen explosion technique. The extent of conversion of supercoiled to relaxed circular plasmid was measured by HPLC as a function of the time of oxygen exposure before or after irradiation, the time-courses being fitted by a pseudo-first-order kinetic expression with k1 = k2[RSH]. Values of k2 (M-1 S-1) were: 2.1 x 10(5) (GSH, Z = -1), 1.4 x 10(6) (2-mercaptoethanol, Z = 0), 1.2 x 10(7) (cysteamine, Z = +1), 6.6 x 10(7) (WR-1065 or N-(2-mercaptoethyl)-1,3-diamino?? propane, Z = +2). The approximately 6-fold increase in rate with each unit increase in Z is attributed to concentration of cationic thiols near DNA as a consequence of counter-ion condensation and reduced levels of anionic thiols near DNA owing to co-ion depletion. The results are quantitatively consistent with chemical repair as a significant mechanism for radioprotection of cells by neutral and cationic thiols under aerobic conditions, but indicate that repair by GSH will compete effectively with oxygen only at low oxygen tension.