990 resultados para Intestinal epithelium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterohaemorrhagic Escherichia coli O157 : H7 is a bacterial pathogen that can cause haemorrhagic colitis and haemolytic uremic syndrome. In the primary reservoir host, cattle, the terminal rectum is the principal site of E. coli O157 colonization. In this study, bovine terminal rectal primary epithelial cells were used to examine the role of H7 flagella in epithelial adherence. Binding of a fliC(H7) mutant O157 strain to rectal epithelium was significantly reduced as was binding of the flagellated wild-type strain following incubation with H7-specific antibodies. Complementation of fliC(H7) mutant O157 strain with fliC(H7) restored the adherence to wild-type levels; however, complementation with fliC(H6) did not restore it. High-resolution ultrastructural and imunofluorescence studies demonstrated the presence of abundant flagella forming physical contact points with the rectal epithelium. Binding to terminal rectal epithelium was specific to H7 by comparison with other flagellin types tested. In-cell Western assays confirmed temporal expression of flagella during O157 interaction with epithelium, early expression was suppressed during the later stages of microcolony and attaching and effacing lesion formation. H7 flagella are expressed in vivo by individual bacteria in contact with rectal mucosa. Our data demonstrate that the H7 flagellum acts as an adhesin to bovine intestinal epithelium and its involvement in this crucial initiating step for colonization indicates that H7 flagella could be an important target in intervention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The final steps in the absorption and excretion of copper at the molecular level are accomplished by 2 closely related proteins that catalyze the ATP-dependent transport of copper across the plasma membrane. These proteins, ATP7A and ATP7B, are encoded by the genes affected in human genetic copper-transport disorders, namely, Menkes and Wilson diseases. We studied the effect of copper perfusion of an isolated segment of the jejunum of ATP7A transgenic mice on the intracellular distribution of ATP7A by immunofluorescence of frozen sections. Our results indicate that ATP7A is retained in the trans-Golgi network under copper-limiting conditions, but relocalized to a vesicular compartment adjacent to the basolateral membrane in intestines perfused with copper. The findings support the hypothesis that the basolateral transport of copper from the enterocyte into the portal blood may involve ATP7A pumping copper into a vesicular compartment followed by exocytosis to release the copper, rather than direct pumping of copper across the basolateral membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in the incidence of food allergy is a growing problem for the western world. This review will focus on the findings from several macromolecular epithelial transport experiments and drug permeability studies to provide a recent comprehension of food allergen intestinal epithelial cell transport and the allergen-epithelial relationship. Specifically, this review will aim to answer whether allergens can permeate the intestinal barrier directly via intestinal epithelial cells, and whether this mode of transport affects downstream immune reactions. By improving our understanding of the interactions which take place during exposure of food allergens with the intestinal epithelium, we can begin to understand whether the epithelial barrier plays a major role in the allergic sensitization process rather than simply restricting the entry of allergens to the underlying lamina propria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propõe-se, neste trabalho, o uso de microscopia eletrônica de varredura para avaliar perda de epitélio intestinal da mucosa intestinal de pintos machos e fêmeas submetidos a prolongado jejum pós-eclosão de água e ração. Dois segmentos do duodeno, jejuno e íleo por ave foram coletados e processados pelo método de rotina para microscopia eletrônica de varredura. Seis diferentes graus de perda de epitélio intestinal foram determinados: grau 0, vilos normais, sem extrusão; grau 1, vilos com pequenos pontos de extrusão; grau 2, vilos com perda de epitélio no ápice; grau 3, vilos com perda de epitélio na região apical; grau 4, vilos com perda de epitélio em sua metade superior; grau 5: vilos sem epitélio; grau 6: vilo quebrado. As três regiões intestinais das fêmeas apresentaram aproximadamente 90% de seus vilos normais (graus 0 e 1), enquanto nos machos ocorreu 38% de vilos normais no duodeno e jejuno e 85% no íleo. Além disso, machos apresentaram graus mais acentuados de perda de epitélio (graus 3, 4, 5 e 6) que as fêmeas (grau 3). Os dados indicaram que a mucosa intestinal de pintos machos é mais sensível a prolongado jejum pós-eclosão que a de pintos fêmeas. A microscopia eletrônica de varredura pode ser usada como um método de rotina seguro para a caracterização e quantificação de perda de epitélio intestinal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of diets with variable zinc levels on the midgut epithelial cells were studied in Oreochromis niloticus L. One hundred and twenty fry of tilapia were apportioned into 4 experimental groups (I, II, III and IV groups), with 30 fish in each treatment, 5 replicate aquaria per treatment containing 6 fish each. The animals of the 4 groups were fed with isonitrogenous (30% crude protein) and isoenergetic (3000 Kcal/Kg of digestible energy) diets with increasing quantities of zinc (44.59; 149.17; 309.93; 599.67 mg Zn/kg of diet), twice a day, for 93 days. Three fish from each group were sacrificed at 36, 66 and 93 days and samples of midgut were removed for ultrastructural analysis. After 93 days of treatment, 3 animals of each experimental group were used for the analysis of zinc concentration by atomic absorption spectrophotometry. The comparative relative index (CRI) revealed that the animals in groups II, III and IV contained, respectively, 1.99%, 34.67% and 22.78% more zinc than the mean concentration in animals from group I. The ultrastructural analysis showed enterocytes with swelling of smooth surfaced endoplasmic reticulum and dilated mitochondria with variable matrix rarefaction and cristae number reduction in the fish exposed to 599.67 mg Zn/Kg of diet at 66 and 93 days of treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Galectins are involved at different stages in inflammation. Galectin-3, although mostly described as proinflammatory, can also act as an immunomodulator by inducing apoptosis in T cells. The present study aims to determine galectin-3 expression in the normal and inflamed intestinal mucosa and to define its role in T cell activity. MATERIALS AND METHODS: Galectin-3 was detected by quantitative polymerase chain reaction with total RNA from endoscopic biopsies and by immunohistochemistry. Biopsies and peripheral blood mononuclear cells (PBMC) were stimulated in vitro and were used to assess the functional consequences of inhibition or exogenous addition of galectin-3. RESULTS: Galectin-3 is expressed at comparable levels in controls and inflammatory bowel disease (IBD) patients in remission. In the normal mucosa, galectin-3 protein was mainly observed in differentiated enterocytes, preferentially at the basolateral side. However, galectin-3 was significantly downregulated in inflamed biopsies from IBD patients. Ex vivo stimulation of uninflamed biopsies with tumor necrosis factor led to similar galectin-3 messenger RNA downregulation as in vivo. When peripheral blood mononuclear cells (PBMC) were analyzed, galectin-3 was mainly produced by monocytes. Upon mitogen stimulation, we observed increased proliferation and decreased activation-induced cell death of peripheral blood T cells in the presence of galectin-3-specific small interfering RNA. In contrast, exogenous addition of recombinant galectin-3 led to reduced proliferation of mitogen-stimulated peripheral blood T cells. CONCLUSIONS: Our results suggest that downregulation of epithelial galectin-3 in the inflamed mucosa reflects a normal immunological consequence, whereas under noninflammatory conditions, its constitutive expression may help to prevent inappropriate immune responses against commensal bacteria or food compounds. Therefore, galectin-3 may prove valuable for manipulating disease activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids (GC) are lipophilic hormones commonly used as therapeutics in acute and chronic inflammatory disorders such as inflammatory bowel disease due to their attributed anti-inflammatory and immunosuppressive actions. Although the adrenal glands are the major source of endogenous GC, there is increasing evidence for the production of extra-adrenal GC in the brain, thymus, skin, vasculature, and the intestine. However, the physiological relevance of extra-adrenal-produced GC remains still ambiguous. Therefore, this review attracts attention to discuss possible biological benefits of extra-adrenal-synthesized GC, especially focusing on the impact of locally synthesized GC in the regulation of intestinal immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebrate immune systems contain T cells bearing either alpha beta or gamma delta T-cell antigen receptors (TCRs). alpha beta T cells perform all well-characterized T-cell effector functions, while the biological functions of gamma delta + cells remain unclear. Of particular interest is the role of gamma delta + cells during epithelial infections, since gamma delta + cells are commonly abundant within epithelia. Eimeria spp. are intracellular protozoa that infect epithelia of most vertebrates, causing coccidiosis. This study shows that in response to Eimeria vermiformis, mice lacking alpha beta T cells display defects in protective immunity, while mice lacking gamma delta + cells display exaggerated intestinal damage, apparently due to a failure to regulate the consequences of the alpha beta T cell response. An immuno-downregulatory role during infection, and during autoimmune disease, may be a general one for gamma delta + cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of the human adenomatosis polyposis coli (APC) gene are associated with the development of familial as well as sporadic intestinal neoplasia. To examine the in vivo function of APC, 129/Sv embryonic stem (ES) cells were transfected with DNA encoding the wild-type human protein under the control of a promoter that is active in all four of the small intestine's principal epithelial lineages during their migration-associated differentiation. ES-APC cells were then introduced into C57BL/6-ROSA26 blastocysts. Analyses of adult B6-ROSA26<-->129/Sv-APC chimeric mice revealed that forced expression of APC results in markedly disordered cell migration. When compared with the effects of forced expression of E-cadherin, the data suggest that APC-catenin and E-cadherin-catenin complexes have opposing effects on intestinal epithelial cell movement/adhesiveness; augmentation of E-cadherin-beta-catenin complexes produces a highly ordered, "adhesive" migration, whereas augmentation of APC-beta-catenin complexes produces a disordered, nonadhesive migratory phenotype. We propose that APC mutations may promote tumorigenesis by increasing the relative activity of cadherin-catenin complexes, resulting in enhanced adhesiveness and functional anchorage of initiated cells within the intestinal crypt. Our studies also indicate that chimeric mice generated from B6-ROSA26 blastocysts and genetically manipulated ES cells should be useful for auditing gene function in the gastrointestinal tract and in other tissues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O diabetes mellitus tipo 2 (DM2) é uma doença de prevalência crescente na população mundial, sendo associado ao aumento de diversas comorbidades. A relação entre o trato digestivo e o DM2 tem sido fortalecida a partir dos resultados das diferentes cirurgias metabólicas frente à remissão do distúrbio endócrino. Alterações morfológicas hipertróficas no epitélio intestinal são percebidas nos estágios iniciais da doença e parece ter papel primordial na instalação da hiperglicemia crônica. O gene p53 participa ativamente dos processos de regulação do crescimento epitelial intestinal e pode sofrer alteração de sua expressão em estados diabéticos. Objetiva-se avaliar os resultados clínicos e laboratoriais de pacientes DM2 e com índice de Massa Corpórea (IMC) >25 e <35 Kg/m2 submetidos a cirurgia metabólica denominada adaptação digestiva com duodenal switch parcial (DSP) e avaliar o comportamento da expressão do gene p53 na mucosa intestinal no período pré e pós-operatório. Nove pacientes DM2, com IMC<35Kg/m2 foram operados pela técnica DSP. Biópsias de duodeno e íleo foram colhidas no estado diabético (pré e transoperatório respectivamente) e, 3 meses após a cirurgia, através de endoscopia digestiva alta. Foram comparados os dados de evolução antropométrica (IMC) e laboratorial no período pré e pós-operatório. Através do método enzyme-linked immunosorbent assay (ELISA) foram determinados os níveis dos entero-hormônios glucagon-like peptide-1 (GLP-1) e glucose-dependent insulinotropic peptide (GIP), no pré e pós-operatório, em jejum e pós-prandial nos períodos 30',60',90' e 120'. A expressão do gene p53, foi avaliada por real time polymerase chain reaction (qrt-PCR) e western blot, nos dois diferentes momentos. As variáveis: glicemia de jejum e pós-prandial (2 horas), trigliceridemia de jejum, hemoglobina glicada (HbAc1) e peptídeo C foram analisadas. As médias dos parâmetros laboratoriais foram comparadas pela análise multivariada ANOVA e após teste-Tukey. A média de expressão relativa do gene p53 foi comparada nos dois períodos pelo teste t-student. Os resultados evidenciaram que entre maio e dezembro de 2010, nove pacientes (4 homens, 5 mulheres) DM2 e com IMC entre 26 e 34Kg/m2 foram submetidos a DSP. A média de IMC do grupo operado foi de 31,3. Houve queda do IMC média de 23% após um ano. Houve queda significativa (p<0,05) nos níveis de triglicerídeos, glicemia de jejum e pós-prandial (2 horas), HbA1c assim como aumento do peptídeo-C (p<0,05), quando comparados os períodos pré e pós-operatório. Os níveis séricos de GLP-1 foram significativamente maiores no pós-operatório (p<0,05), tanto em jejum como pós-prandial sendo que houve diminuição dos níveis de GIP, contudo sem significância estatística. O gene p53 sofreu aumento significativo de sua expressão relativa (qrt-PCR)(p<0,05) no período pós-operatório na mucosa duodenal e uma tendência de aumento no íleo, contudo sem significância estatística. A análise da expressão ao nível proteico foi bem sucedida somente no íleo, também mostrando tendência de aumento. Concluí-se que a DSP foi capaz de controlar satisfatoriamente o DM2 em pacientes com IMC<35 Kg/m2. Houve aumento da secreção de GLP-1 e tendência de diminuição do GIP. Houve aumento da expressão do p53 na mucosa intestinal, no período pós-operatório, após o controle do diabetes, quando comparada ao período pré-operatório.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Aim: Inflammatory bowel diseases (IBD) are immune-mediated chronic diseases that are characterized by an overreaction of the intestinal immune system to the intestinal microbiota. VSL#3, a mixture of 8 different lactic acid bacteria, is a clinically relevant probiotic compound in the context of IBD, but the bacterial structures and molecular mechanisms underlying the observed protective effects are largely unknown. The intestinal epithelium plays a very important role in the maintenance of the intestinal homeostasis, as the intestinal epithelial cells (IEC) are capable of sensing, processing, and reacting upon signals from the luminal microbiota and the intestinal immune system. This immune regulatory function of the IEC is lost in IBD owing to dysregulated activation of the IEC. Thus, the aim of this study was to reveal protective mechanisms of VSL#3 on IEC function.

Results: In vitro, VSL#3 was found to selectively inhibit activation-induced secretion of the T-cell chemokine interferon-inducible protein (IP)-10 in IEC. Cell wall-associated proteins of VSL#3-derived Lactobacillus casei (L. casei) were identified to be the active anti-inflammatory component of VSL#3. Mechanistically, L. casei did not impair initial IP-10 protein production, but induced posttranslational degradation of IP-10 in IEC. Feeding studies in tumor necrosis factor (TNF)(Delta ARE/+) mice, a mouse model for experimental ileitis, revealed that neither VSL#3 nor L. casei is capable of reducing ileal inflammation. Even preweaning feeding of VSL#3 did not prevent the development of severe ileitis in TNF Delta ARE/+ mice. In contrast, VSL#3 feeding studies in IL-10-/- mice, a model for experimental colitis, revealed that VSL#3 has local, intestinal compartment-specific protective effects on the development of inflammation. Reduced histopathologic inflammation in the cecum of IL-10-/- mice after VSL#3 treatment was found to correlate with reduced levels of IP-10 protein in primary cecal epithelial cells.

Conclusion and Outlook: These results suggest that the inhibitory effect of VSL#3-derived L. casei on IP-10 secretion in IEC is an important probiotic mechanism that contributes to the anti-inflammatory effects of VSL#3 in specific subsets of patients with IBD. An important future aim is the identification of the active probiotic protein, which could serve as a basis for the development of new efficient therapies in the context of IBD.