956 resultados para Insulin-like growth factor-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PKC apoptosis WTI regulator gene, also named prostate apoptosis response-4 (PAR-4), encodes a pro-apoptotic protein that sensitizes cells to numerous apoptotic stimuli. Insulin-like growth factor-1 (IGF-1) and 17 beta-estradiol (E2), two important factors for breast cancer development and progression, have been shown to down-regulate PAR-4 expression and inhibit apoptosis induced by PAR-4 in neuronal cells. In this study, we sought to investigate the mechanisms of regulation of PAR-4 gene expression in MCF-7 cells treated with E2 or IGF-1. E2 (10 nM) and IGF-1 (12.5 nM) each down-regulated PAR-4 expression in MCF-7 cells after 24 h of treatment. The effect of E2 was dependent on ER activation, as demonstrated by an increase in PAR-4 expression when cells were pretreated for 1 h with 1 mu M ICI-182,780 (ICI) before receiving E2 plus ICI. The effect of IGF-1 was abolished by pre-treatment for 1 h with 30 mu M LY294002 (a specific PI3-K inhibitor), and significantly inhibited by 30 mu M SB202190 (a specific p38MAPK inhibitor). We also demonstrated that E2 acts synergistically with IGF-1, resulting in greater down-regulation of PAR-4 mRNA expression compared with E2 or IGF-1 alone. Our results show for the first time that E2 and IGF-1 inhibit PAR-4 gene expression in MCF-7 cells, suggesting that this down-regulation may provide a selective advantage for breast cancer cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of Long-R-3-IGF-1 (an IGF-1 fusion analog) by constant-rate, fed-batch fermentation of Escherichia coli yielded 2.6 g fusion protein/L, corresponding to an actual IGF-1 concentration of 2.2 g/L. A novel strategy employing three distinct feeding stages was developed which raised product concentration to 4.3 g/L (3.6 g/L of IGF-1) while minimising glucose and acetate accumulation. This improved productivity was not accompanied by an increase in inclusion body size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 mu M) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 mu M can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute normocapnic hypoxemia can cause functional renal insufficiency by increasing renal vascular resistance (RVR), leading to renal hypoperfusion and decreased glomerular filtration rate (GFR). Insulin-like growth factor 1 (IGF-1) activity is low in fetuses and newborns and further decreases during hypoxia. IGF-1 administration to humans and adult animals induces pre- and postglomerular vasodilation, thereby increasing GFR and renal blood flow (RBF). A potential protective effect of IGF-1 on renal function was evaluated in newborn rabbits with hypoxemia-induced renal insufficiency. Renal function and hemodynamic parameters were assessed in 17 anesthetized and mechanically ventilated newborn rabbits. After hypoxemia stabilization, saline solution (time control) or IGF-1 (1 mg/kg) was given as an intravenous (i.v.) bolus, and renal function was determined for six 30-min periods. Normocapnic hypoxemia significantly increased RVR (+16%), leading to decreased GFR (-14%), RBF (-19%) and diuresis (-12%), with an increased filtration fraction (FF). Saline solution resulted in a worsening of parameters affected by hypoxemia. Contrarily, although mean blood pressure decreased slightly but significantly, IGF-1 prevented a further increase in RVR, with subsequent improvement of GFR, RBF and diuresis. FF indicated relative postglomerular vasodilation. Although hypoxemia-induced acute renal failure was not completely prevented, IGF-1 elicited efferent vasodilation, thereby precluding a further decline in renal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 1820 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) protects beta-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is also involved in mediating GLP-1-increase in glucose competence and proliferation. We show that GLP-1 up-regulated IGF-1R expression by a protein kinase A-dependent translational control mechanism, whereas isobutylmethylxanthine, which led to higher intracellular accumulation of cAMP than GLP-1, increased both IGF-1R transcription and translation. We then demonstrated, using MIN6 cells and primary islets, that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF-2 secretion. We showed that GLP-1-induced primary beta-cell proliferation was suppressed by Igf-1r gene inactivation and by IGF-2 immunoneutralization or knockdown. Together our data show that regulation of beta-cell number and function by GLP-1 depends on the cAMP/protein kinase A mediated-induction of IGF-1R expression and the increased activity of an IGF-2/IGF-1R autocrine loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18-20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un remodelage vasculaire anormal est à la base de la pathogenèse des maladies cardio-vasculaires (MCV) telles que l’athérosclérose et l’hypertension. Des dysfonctionnements au niveau de la migration, l’hypertrophie et la prolifération des cellules musculaires lisses vasculaires (CMLV) sont des évènements cellulaires qui jouent un rôle primordial dans le remodelage vasculaire. L’insulin-like growth factor 1 (IGF-1), puissant facteur mitogène, contribue au développement des MCV, notamment via l’activation des protéines MAPK et PI3-K/PKB, composantes clés impliquées dans les voies de croissance cellulaire. Ces molécules sont également impliquées dans la modulation de l’expression de nombreux facteurs de transcription, incluant le facteur Egr-1. Egr-1 est régulé à la hausse dans différents types de maladies vasculaires impliquant les voies de signalisation de croissance et de stress oxydant qui par ailleurs peuvent être déclenchées par l’IGF-1. Cependant, la question d’une possible modulation de l’expression d’Egr-1 dans les CMLV demeure inabordée; plus spécifiquement, la caractérisation de la voie de signalisation reliant l’action d’IGF-1 à l’expression d’Egr-1 reste à établir. Dans cette optique, l’objectif de cette étude a été d’examiner l’implication de MAPK, PKB et des dérivés réactifs de l’oxygène (DRO) dans l’expression d’Egr-1 induite par l’IGF-1 dans les CMLV. L’IGF-1 a induit une augmentation marquée du niveau protéique de l’Egr-1 en fonction du temps et de la concentration utilisés. Cette augmentation a été inhibée en fonction des doses d’agents pharmacologiques qui ciblent les voies de signalisation de MAPK, PKB et DRO. De plus, l’expression du facteur de transcription, Egr-1, en réponse de l’IGF-1, a été atténuée suite à un blocage pharmacologique des processus cellulaires responsables de la synthèse d’ARN et de synthèse protéique. Pour conclure, on a démontré que l’IGF-1 stimule l’expression d’Egr-1 via les voies de signalisation, impliquant ERK1/2/JNK, PI3K/PKB. On a également proposé que les DRO jouent un rôle important dans ce processus. Dans l’ensemble, nous avons suggéré un nouveau mécanisme par lequel l’IGF-1 promeut la prolifération et l’hypertrophie cellulaire, processus à la base des anomalies vasculaires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avaliaram-se o efeito do IGF-I na maturação in vitro (MIV) (experimento I) e no desenvolvimento embrionário (DE) (experimento II) de oócitos bovinos fecundados in vitro, quanto às taxas de clivagem (TC), de blastocistos (TB) e de eclosão (TE). Para MIV, complexos cumulus-oócitos imaturos foram cultivados em meio TCM-199 suplementado com HEPES, bicarbonato e piruvato de sódio, aditivos, soro fetal bovino (meio B-199) e gonadotrofinas 14U/ml de PMSG e 7U/ml de hCG). Para o desenvolvimento embrionário, os oócitos/zigotos foram cultivados em meio B-199 com células epiteliais do oviduto bovino em suspensão sob óleo de silicone. As condições de cultivo in vitro para ambos os experimentos seguiram os tratamentos: 1- meio B-199 + 200 ng/ml IGF-I; 2- B-199 + 100 ng/ml IGF-I; 3- B-199 + 50 ng/ml IGF-I; 4- B-199 + 10 ng/ml IGF-I; 5- B-199 + 0 ng/ml IGF-I. Todas as culturas foram realizadas a 38,5° C em atmosfera com 5% de CO2 e os dados foram analisados pelo teste do qui-quadrado. No experimento I, não houve diferença (P>0,05) entre os tratamentos quanto às TC, TB e TE, quando o meio de MIV foi suplementado com IGF-I. No experimento II, a adição de IGF-I ao meio de DE resultou em aumento na TC (P<0,05) mas não influenciou a TB e a TE. A adição de 200 ng/ml de IGF-I ao meio DE melhorou a TC (71,1%) quando comparada com a TC dos grupos de 100 ng/ml de IGF-I (57,6%) ou controle (56,7%), entretanto não houve diferença quando comparada com a dos grupos de 50 ng/ml (69,4%) ou 10 ng/ml (73,1%) de IGF-I. Não houve efeito benéfico na adição de 10 a 200 ng/ml de IGF-I nos meios de MIV e de DE com relação ao desenvolvimento de embriões produzidos a partir de oócitos maturados e fecundados in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)