980 resultados para Industrial technologies
Resumo:
Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.
Resumo:
La Ley Orgánica 8/2013 para la mejora de la calidad educativa, facilita al alumno de bachillerato una amplia posibilidad de configuración de los estudios en función de sus intereses. Sin embargo, la oferta educativa real resulta mucho más restringida. En el presente documento, se aborda el caso de la materia, del bloque de materias específicas, Tecnología Industrial II, la cual no está siendo impartida en la mayoría de los centros docentes como consecuencia del número insuficiente de alumnos que la solicitan. Tras un análisis inicial del currículo de la materia, se desarrolla un estudio que profundiza en las relaciones existentes con el resto de asignaturas de Educación Secundaria y Bachillerato. Las vínculos más significativos que se han localizado responden, por una parte, al solapamiento de contenidos que inevitablemente surge con otras materias y; por otra, a la ubicación de los fundamentos necesarios para abordar los contenidos de Tecnología Industrial II. El objeto último del análisis consiste en plantear una metodología docente que permita la integración real de esta materia en los centros de dimensión media. Para ello, y a la vista de los resultados obtenidos, se articulan diferentes estrategias de actuación que, a la vez que enriquecen el acto pedagógico, permiten optimizar los recursos humanos y materiales necesarios para abordar la enseñanza de Tecnología Industrial II. ABSTRACT The Law 8/2013 for the improvement of the educational quality facilitates to the pupil a wide possibility to configurate his studies in depend of his interest. Nevertheless, the real offer turns out to be restricted. The present document studies the subject Industrial Technologies II; who is not been teached in most educational center, as they are not enough pupils interested in it. After an initial analysis of the subject there have been developed a studiy that look for the existing relations with the contents of other subjects in the same cycle. The more important relations will be clasifficate in two different types. In the first place, the repetition of contents, in the second place the basement concepts necessaries to study the subject
Resumo:
Understanding of mechanical behaviour of food particles will provide researchers and designers essential knowledge to improve and optimise current food industrial technologies. Understanding of tissue behaviours will lead to the reduction of material loss and enhance energy efficiency during processing operations. Although, there are some previous studies on properties of fruits and vegetables however, tissue behaviour under different processing operations will be different. The presented paper is a part of FE modelling and simulation of tissue damage during mechanical peeling of tough skinned vegetables. In this study indentation test was performed on peeled and unpeeled samples at loading rate of 20 mm/min for peel, flesh and unpeeled samples. Consequently, force deformation and stress and strain of samples were calculated. The toughness of the tissue also has been calculated and compared with the previous results.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.
Resumo:
Starch is one of the most important sources of reserve of carbohydrate in plants and the main source in the human diet due to its abundance in the nature. There no other food ingredient that can be compared with starch in terms of sheer versatility of application in the food industry. Unprocessed native starches are structurally too weak and functionally too restricted for application in today’s advanced food and industrial technologies. The main objective of this study was to compare the thermal behavior of native cassava starch and those treated with hydrogen peroxide, as well as those treated with hydrogen peroxide and ferrous sulfate. The cassava starch was extracted from cassava roots (Manihot esculenta, Crantz) and treated by standardized hydrogen peroxide (H2 O2 ) solutions at 1, 2 and 3% (with or without FeSO4 ). Investigated by using they are thermoanalytical techniques: thermogravimetry - TG, differential thermal analysis – DTA and differential scanning calorimetry - DSC, as well as optical microscopy and X-ray powder diffractometry. The results showed the steps of thermal decomposition, changes in temperatures and in gelatinization enthalpy and small changes in crystallinity of the granules.
Resumo:
"DOE/ORO 2076."
Resumo:
As the largest source of dimensional measurement uncertainty, addressing the challenges of thermal variation is vital to ensure product and equipment integrity in the factories of the future. While it is possible to closely control room temperature, this is often not practical or economical to realise in all cases where inspection is required. This article reviews recent progress and trends in seven key commercially available industrial temperature measurement sensor technologies primarily in the range of 0 °C–50 °C for invasive, semi-invasive and non-invasive measurement. These sensors will ultimately be used to measure and model thermal variation in the assembly, test and integration environment. The intended applications for these technologies are presented alongside some consideration of measurement uncertainty requirements with regard to the thermal expansion of common materials. Research priorities are identified and discussed for each of the technologies as well as temperature measurement at large. Future developments are briefly discussed to provide some insight into which direction the development and application of temperature measurement technologies are likely to head.
Resumo:
This paper outlines our literature review background, investigation and practical application utilizing a precise optical survey level and total station technology for a specialist industrial measurement application. The practical part of the project was to measure and check specific critical features of the Industrial JIG assembly table used by the Queensland University of Technology (QUT) Motorsport group. The JIG is used in constructing a new Formula SAE race-car frame each year and is used throughout the racing season to check the production frame for twists, bends and potential stresses. The industrial JIG table required two survey approaches, firstly determination of the overall flatness throughout its’ steel base surface. Secondly was the validation of verticality of the steel uprights used to support and hold the race-car frame in place during construction and checking alignment for key suspension components. In addition the investigation brings realisations that there are far more accurate, efficient and economical technologies to be harnessed in industrial metrology.
Resumo:
Relevant to the study of people’s attitudes towards public transport use is the consideration to the role of technology as part of the travel experience. Technologies aim to enhance daily tasks but tend to change the way people interact with products and can be perceived as difficult to use. This is critical in the context of “public use” where products and services are to be used by the population at large: adults, children, elderly, people with disabilities, and tourists. From different perspectives, the topic of users and the use of technologies have been studied in the social sciences and human computer interaction fields; however, earlier approaches fail to address the ways in which experiential knowledge informs people’s interactions with products and technologies, and how such information could guide the design of future technologies. This paper describes a pilot study, part of a larger ongoing exploratory research that investigates people’s experiences with infrastructure, systems, and technologies in the context of public transport. The methodological approach included focus groups, field observations, and retrospective verbal reports. At this stage, the study found that four context led factors were the primary source of reference informing participants’ actions and interactions; they are: (i) context >> experience, (ii) context >> interface, (iii) context >> knowledge, (iv) context >> emotion.
Resumo:
Industrial production and supply chains face increased demands for mass customization and tightening regulations on the traceability of goods, leading to higher requirements concerning flexibility, adaptability, and transparency of processes. Technologies for the ’Internet of Things' such as smart products and semantic representations pave the way for future factories and supply chains to fulfill these challenging market demands. In this chapter a backend-independent approach for information exchange in open-loop production processes based on Digital Product Memories DPMs is presented. By storing order-related data directly on the item, relevant lifecycle information is attached to the product itself. In this way, information handover between several stages of the value chain with focus on the manufacturing phase of a product has been realized. In order to report best practices regarding the application of DPM in the domain of industrial production, system prototype implementations focusing on the use case of producing and handling a smart drug case are illustrated.