965 resultados para Imaging genomics
Resumo:
The introduction of molecular criteria into the classification of diffuse gliomas has added interesting practical implications to glioma management. This has created a new clinical need for correlating imaging characteristics with glioma genotypes, also known as radiogenomics or imaging genomics. Whilst many studies have primarily focused on the use of advanced magnetic resonance imaging (MRI) techniques for radiogenomics purposes, conventional MRI sequences still remain the reference point in the study and characterization of brain tumours. Moreover, a different approach may rely on diffusion-weighted imaging (DWI) usage, which is considered a “conventional” sequence in line with recently published directions on glioma imaging. In a non-invasive way, it can provide direct insight into the microscopic physical properties of tissues. Considering that Isocitrate-Dehydrogenase gene mutations may reflect alterations in metabolism, cellularity, and angiogenesis, which may manifest characteristic features on an MRI, the identification of specific MRI biomarkers could be of great interest in managing patients with brain gliomas. My study aimed to evaluate the presence of specific MRI-derived biomarkers of IDH molecular status through conventional MRI and DWI sequences.
Resumo:
PURPOSE: The purpose of our study was to assess whether a model combining clinical factors, MR imaging features, and genomics would better predict overall survival of patients with glioblastoma (GBM) than either individual data type. METHODS: The study was conducted leveraging The Cancer Genome Atlas (TCGA) effort supported by the National Institutes of Health. Six neuroradiologists reviewed MRI images from The Cancer Imaging Archive (http://cancerimagingarchive.net) of 102 GBM patients using the VASARI scoring system. The patients' clinical and genetic data were obtained from the TCGA website (http://www.cancergenome.nih.gov/). Patient outcome was measured in terms of overall survival time. The association between different categories of biomarkers and survival was evaluated using Cox analysis. RESULTS: The features that were significantly associated with survival were: (1) clinical factors: chemotherapy; (2) imaging: proportion of tumor contrast enhancement on MRI; and (3) genomics: HRAS copy number variation. The combination of these three biomarkers resulted in an incremental increase in the strength of prediction of survival, with the model that included clinical, imaging, and genetic variables having the highest predictive accuracy (area under the curve 0.679±0.068, Akaike's information criterion 566.7, P<0.001). CONCLUSION: A combination of clinical factors, imaging features, and HRAS copy number variation best predicts survival of patients with GBM.
Resumo:
The present PhD project was focused on the development of new tools and methods for luminescence-based techniques. In particular, the ultimate goal was to present substantial improvements to the currently available technologies for both research and diagnostic in the fields of biology, proteomics and genomics. Different aspects and problems were investigated, requiring different strategies and approaches. The whole work was thus divided into separate chapters, each based on the study of one specific aspect of luminescence: Chemiluminescence, Fluorescence and Electrochemiluminescence. CHAPTER 1, Chemiluminescence The work on luminol-enhancer solution lead to a new luminol solution formulation with 1 order of magnitude lower detection limit for HRP. This technology was patented with Cyanagen brand and is now sold worldwide for Western Blot and ELISA applications. CHAPTER 2, Fluorescescence The work on dyed-doped silica nanoparticles is marking a new milestone in the development of nanotechnologies for biological applications. While the project is still in progress, preliminary studies on model structures are leading to very promising results. The improved brightness of these nano-sized objects, their simple synthesis and handling, their low toxicity will soon turn them, we strongly believe, into a new generation of fluorescent labels for many applications. CHAPTER 3, Electrochemiluminescence The work on electrochemiluminescence produced interesting results that can potentially turn into great improvements from an analytical point of view. Ru(bpy)3 derivatives were employed both for on-chip microarray (Chapter 3.1) and for microscopic imaging applications (Chapter 3.2). The development of these new techniques is still under investigation, but the obtained results confirm the possibility to achieve the final goal. Furthermore the development of new ECL-active species (Chapter 3.3, 3.4, 3.5) and their use in these applications can significantly improve overall performances, thus helping to spread ECL as powerful analytical tool for routinary techniques. To conclude, the results obtained are of strong value to largely increase the sensitivity of luminescence techniques, thus fulfilling the expectation we had at the beginning of this research work.
Resumo:
The annual grass Brachypodium distachyon has been recently recognized as the model plant for functional genomics of temperate grasses, including cereals of economic relevance like wheat and barley. Sixty-two lines of B. distachyon were assessed for response to drought stress and heat tolerance. All these lines, except the reference genotype BD21, derive from specimens collected in 32 distinct locations of the Iberian Peninsula, covering a wide range of geo- climatic conditions. Sixteen lines of Brachypodium hybridum, an allotetraploid closely related to B. distachyon were used as reference of abiotic-stress well-adapted genotypes. Drought tolerance was assessed in a green-house trial. At the rosette-stage, no irrigation was applied to treated plants whereas their replicates at the control were maintained well watered during all the experiment. Thermographic images of treated and control plants were taken after 2 and 3 weeks of drought treatment, when stressed plants showed medium and extreme wilting symptoms. The mean leaf temperature of stressed (LTs) and control (LTc) plants was estimated based upon thermographic records from selected pixels (183 per image) that strictly correspond to leaf tissue. The response to drought was based on the analysis of two parameters: LTs and the thermal difference (TD) between stressed and control plants (LTs – LTc). The response to heat stress was based on LTc. Comparison of the mean values of these parameters showed that: 1) Genotypes better adapted to drought (B. hybridum lines) presented a higher LTs and TD than B. distachyon lines. 2) Under high temperature conditions, watered plants of B. hybridum lines maintained lower LTc than those of B. distachyon. Those results suggest that in these species adaptation to drought is linked to a more efficient stomata regulation: under water stress stomata are closed, increasing foliar temperature but also water use efficiency by reducing transpiration. With high temperature and water availability the results are less definite, but still seems that opening stomata allow plants to increase transpiration and therefore to diminish foliar temperature.
Resumo:
Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.
Resumo:
The aim of this study is to test the feasibility and reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) evaluations of the fetal brains in cases of twin-twin transfusion syndrome (TTTS). From May 2011 to June 2012, 24 patients with severe TTTS underwent MRI scans for evaluation of the fetal brains. Datasets were analyzed offline on axial DW images and apparent diffusion coefficient (ADC) maps by two radiologists. The subjective evaluation was described as the absence or presence of water diffusion restriction. The objective evaluation was performed by the placement of 20-mm(2) circular regions of interest on the DW image and ADC maps. Subjective interobserver agreement was assessed by the kappa correlation coefficient. Objective intraobserver and interobserver agreements were assessed by proportionate Bland-Altman tests. Seventy-four DW-MRI scans were performed. Sixty of them (81.1%) were considered to be of good quality. Agreement between the radiologists was 100% for the absence or presence of diffusion restriction of water. For both intraobserver and interobserver agreement of ADC measurements, proportionate Bland-Altman tests showed average percentage differences of less than 1.5% and 95% CI of less than 18% for all sites evaluated. Our data demonstrate that DW-MRI evaluation of the fetal brain in TTTS is feasible and reproducible.
Resumo:
The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (ependymoma, pilocytic astrocytoma, central neurocytoma, ganglioglioma, choroid plexus papilloma, primitive neuroectodermal tumors, meningioma, epidermoid tumor). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some image patterns that may facilitate the differential diagnosis.
Resumo:
The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (colloid cyst, oligodendroglioma, astroblastoma, lipoma, cavernoma) and of inflammatory/infectious lesions (neurocysticercosis and an atypical presentation of neurohistoplasmosis). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some imaging patterns that may facilitate the differential diagnosis.
Resumo:
Chronic pain has been often associated with myofascial pain syndrome (MPS), which is determined by myofascial trigger points (MTrP). New features have been tested for MTrP diagnosis. The aim of this study was to evaluate two-dimensional ultrasonography (2D US) and ultrasound elastography (UE) images and elastograms of upper trapezius MTrP during electroacupuncture (EA) and acupuncture (AC) treatment. 24 women participated, aged between 20 and 40 years (M ± SD = 27.33 ± 5.05) with a body mass index ranging from 18.03 to 27.59 kg/m2 (22.59 ± 3.11), a regular menstrual cycle, at least one active MTrP at both right (RTPz) and left trapezius (LTPz) and local or referred pain for up to six months. Subjects were randomized into EA and AC treatment groups and the control sham AC (SHAM) group. Intensity of pain was assessed by visual analogue scale; MTrP mean area and strain ratio (SR) by 2D US and UE. A significant decrease of intensity in general, RTPz, and LTPz pain was observed in the EA group (p = 0.027; p < 0.001; p = 0.005, respectively) and in general pain in the AC group (p < 0.001). Decreased MTrP area in RTPz and LTPz were observed in AC (p < 0.001) and EA groups (RTPz, p = 0.003; LTPz, p = 0.005). Post-treatment SR in RTPz and LTPz was lower than pre-treatment in both treatment groups. 2D US and UE effectively characterized MTrP and surrounding tissue, pointing to the possibility of objective confirmation of subjective EA and AC treatment effects.
Resumo:
The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).
Resumo:
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.
Resumo:
73
Resumo:
Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures.
Resumo:
The purpose of this study was to correlate the pre-operative imaging, vascularity of the proximal pole, and histology of the proximal pole bone of established scaphoid fracture non-union. This was a prospective non-controlled experimental study. Patients were evaluated pre-operatively for necrosis of the proximal scaphoid fragment by radiography, computed tomography (CT) and magnetic resonance imaging (MRI). Vascular status of the proximal scaphoid was determined intra-operatively, demonstrating the presence or absence of puncate bone bleeding. Samples were harvested from the proximal scaphoid fragment and sent for pathological examination. We determined the association between the imaging and intra-operative examination and histological findings. We evaluated 19 male patients diagnosed with scaphoid nonunion. CT evaluation showed no correlation to scaphoid proximal fragment necrosis. MRI showed marked low signal intensity on T1-weighted images that confirmed the histological diagnosis of necrosis in the proximal scaphoid fragment in all patients. Intra-operative assessment showed that 90% of bones had absence of intra-operative puncate bone bleeding, which was confirmed necrosis by microscopic examination. In scaphoid nonunion MRI images with marked low signal intensity on T1-weighted images and the absence of intra-operative puncate bone bleeding are strong indicatives of osteonecrosis of the proximal fragment.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.