998 resultados para Imagens Landsat TM-5
Resumo:
O mapeamento do uso da terra é fundamental para o entendimento dos processos de mudanças globais, especialmente em regiões como a Amazônia que estão sofrendo grande pressão de desenvolvimento. Tradicionalmente estes mapeamentos têm sido feitos utilizando técnicas de interpretação visual de imagens de satélites, que, embora de resultados satisfatórios, demandam muito tempo e alto custo. Neste trabalho é proposta uma técnica de segmentação da imagens com base em um algoritmo de crescimento de regiões, seguida de uma classificação não-supervisionada por regiões. Desta forma, a classificação temática se refere a um conjunto de elementos (pixels da imagem), beneficiando-se portanto da informação contextual e minimizando as limitações das técnicas de processamento digital baseadas em análise pontual (pixel-a-pixel). Esta técnica foi avaliada numa área típica da Amazônia, situada ao norte de Manaus, AM, utilizando imagens do sensor "Thematic Mapper" - TM do satélite Landsat, tanto na sua forma original quanto decomposta em elementos puros como vegetação verde, vegetação seca (madeira), sombra e solo, aqui denominada imagem misturas. Os resultados foram validados por um mapa de referência gerado a partir de técnicas consagradas de interpretação visual, com verificação de campo, e indicaram que a classificação automática é viável para o mapeamento de uso da terra na Amazônia. Testes estatísticos indicaram que houve concordância significativa entre as classificações automáticas digitais e o mapa de referência (em tomo de 95% de confiança).
Resumo:
O objetivo deste estudo foi fazer uma análise da dinâmica da cobertura vegetal de Curitiba, PR, por meio da manipulação de imagens Landsat TM. Para isso, foram utilizadas duas imagens Landsat TM, sendo uma de 2004 e outra de 1986, que foram georreferenciadas, classificadas e processadas, a fim de se obter o mapa de cobertura vegetal das duas datas. Foram analisados aspectos quantitativos, bem como a distribuição da cobertura vegetal pelas regionais administrativas da cidade nas duas datas. A cobertura vegetal diminuiu em todas as regionais, como resultado do crescimento urbano, principalmente nas áreas de menor densidade urbana e maior quantidade de cobertura vegetal. Dessa forma, a urbanização expandiu-se para além das áreas de ocupação tradicionais. A regional que apresentou maior diminuição de cobertura vegetal foi a Pinheirinho e a que teve menor diminuição, a Matriz. Foi possível identificar maior carência de cobertura vegetal justamente nas áreas onde a ocupação urbana se faz mais presente. Tal informação pode ser útil ao planejamento de áreas verdes ou à arborização urbana, contribuindo como subsídio para o direcionamento das ações a serem realizadas, ao indicar potencialidades, vocações, carências e necessidades das diversas regiões da cidade.
Resumo:
A cobertura vegetal exerce papel imprescindível à proteção e conservação dos recursos naturais, principalmente no que diz respeito aos solos. Este estudo teve como objetivo avaliar e analisar a dimensão espacial e temporal da ação antrópica na cobertura vegetal de parte do semi-árido cearense, utilizando imagens LANDSAT TM-5, de 1985 e 1994, e técnicas de geoprocessamento, para verificar a hipótese de que a degradação ambiental vem sendo intensificada. Foram confeccionadas cartas de vegetação, uso da terra, solos e hidrografia, obtendo-se cartas de sobreposição, por meio das quais se constatou o aumento de áreas degradadas nas diferentes unidades fitoecológicas. No período de uma década, comprovou-se o processo progressivo da degradação nas áreas dos municípios de Independência, Pedra Branca, Mombaça e Tauá, tendo as áreas do município de Pedra Branca apresentado menor degradação. A unidade fitoecológica mais degradada, dentre as estudadas, foi a Caatinga Arbórea Aberta, desencadeando processos de degradação e transformação das unidades circunvizinhas. Grande parte da área foi atingida por processos de degradação ambiental, com forte pauperização da biodiversidade, acompanhados por um rebaixamento geral das formações vegetais.
Resumo:
The objective of this study was to analyze changes in the spectral behavior of the soybean crop through spectral profiles of the vegetation indexes NDVI and GVI, expressed by different physical values such as apparent bi-directional reflectance factor (BRF), surface BRF, and normalized BRF derived from images of the Landsat 5/TM. A soybean area located in Cascavel, Paraná, was monitored by using five images of Landsat 5/TM during the 2004/2005 harvesting season. The images were submitted to radiometric transformation, atmospheric correction and normalization, determining physical values of apparent BRF, surface BRF and normalized BRF. NDVI and GVI images were generated in order to distinguish the soybean biomass spectral response. The treatments showed different results for apparent, surface and normalized BRF. Through the profiles of average NDVI and GVI, it was possible to monitor the entire soybean cycle, characterizing its development. It was also observed that the data from normalized BRF negatively affected the spectral curve of soybean crop, mainly, during the phase of vegetative growth, in the 12-9-2004 image.
Resumo:
O objetivo deste trabalho foi estudar as mudanças no comportamento espectral da cultura da soja, por meio dos perfis espectrais temporais dos índices de vegetação NDVI e GVI, expressos em diferentes valores físicos: fator de reflectância bidirecional (FRB) aparente, de superfície e normalizado derivados de imagens Landsat 5/TM. Foi monitorada área de cultura de soja localizada próxima ao município de Cascavel - PR, utilizando cinco imagens da safra de 2004/2005, sendo realizados nessas imagens os procedimentos de transformação radiométrica, correção atmosférica e normalização, determinando valores físicos dos fatores de reflectância bidirecional aparente, de superfície e normalizado, respectivamente. Com o intuito de caracterizar a resposta espectral da biomassa da soja, geraram-se imagens referentes aos índices de vegetação NDVI e GVI. Como resultado, a cultura mostrou-se diferente para os tratamentos dos fatores de reflectância bidirecional aparente, de superfície e de normalização. Por meio dos perfis médios espectrais do NDVI e GVI, foi possível acompanhar todo o ciclo da cultura da soja, caracterizando o seu desenvolvimento. Observou-se, ainda, que os dados provenientes do fator de reflectância bidirecional normalizado descaracterizaram a curva espectral da cultura da soja, principalmente em meio à fase de crescimento vegetativo, na data de 9-12-2004.
Resumo:
Propôs-se, neste trabalho, estimar dados de albedo à superfície terrestre usando-se o sensor Thematic Mapper (TM) do satélite LANDSAT 5 e compará-lo com dados de duas estações agrometeorológicas localizadas em região de Cerrado e a outra em cultivo da cana-de-açúcar. A região de estudo está localizada no município de Santa Rita do Passa Quatro, SP, Brasil. Para a realização do estudo obtiveram-se seis imagens orbitais do satélite Landsat 5 sensores TM, na órbita 220 e ponto 75, nas datas de 22/02, 11/04, 29/05, 01/08, 17/08 e 21/11, todas do ano de 2005, a que correspondem os dias juliano de 53, 101, 149, 213, 229 e 325, respectivamente. As correções geométricas para as imagens foram realizadas e geradas as cartas de albedo. O algoritmo SEBAL estimou satisfatoriamente os valores de albedo de superfícies sobre áreas de cerrado e de cana-de-açúcar, na região de Santa Rita do Passa Quatro, SP, consistentes com observações realizadas do albedo à superfície.
Resumo:
Neste trabalho, verificou-se a aderência de técnicas de mineração de dados voltadas para problemas de classificação de dados na identificação automatizada de áreas cultivadas com cana-de-açúcar, em imagens do satélite Landsat 5/TM. Para essa verificação, foram estudadas imagens de áreas cultivadas com cana-de-açúcar em três fases fenológicas diferentes. Os pixels foram convertidos em valores de refletância de superfície, nas vizinhanças das cidades de Araras, São Carlos e Araraquara, no Estado de São Paulo. Foram gerados cinco modelos de árvores de decisão binária, induzidos pelo algoritmo C4.5, em que todos produziram taxas de acerto superiores a 90%. A introdução de atributos de textura trouxe ganhos significativos na acurácia do modelo de classificação e contribuiu para melhorar a distinção de áreas cultivadas com cana-de-açúcar em meio a tipos diversos de cobertura do solo, como solo exposto, área urbana, lagos e rios. Os índices de vegetação mostraram-se relevantes na distinção da fase e do estado fenológico das culturas. Os resultados reforçam o potencial forte das árvores de decisão no processo de classificação e identificação de áreas cultivadas com cana-de-açúcar, em diferentes cidades produtoras, no Estado de São Paulo.
Resumo:
Foram estudados, com o auxílio de fotografias aéreas, aspectos qualitativos e quantitativos do relevo e da rede de drenagem de solos de uma área de Santa Bárbara D'Oeste, SP. Esta região compreende 14.625 ha, onde foram selecionadas bacias hidrográficas de 3ª ordem de ramificação e amostras circulares de 5km². As unidades de mapeamento simples ou associações de solos são: Latossolo Vermelho Escuro, Podzólico, Litossolo + Podzólico, Terra Roxa Estruturada + Latossolo Roxo distrófico. Após a caracterização das feições fisiográficas, da área de ocorrência desses solos, foram realizados dois mapas morfopedológicos. No primeiro utilizou-se fotografias aéreas verticais pancromáticas na escala 1: 35.000 (data de 25/6/78) e no segundo imagens orbitais do sensor Thematic Mapper do LANDSAT-5, nas bandas 3, 4 e 5 e composição colorida 3/4/5 na escala 1: 100.000 (data de 12/9/91). As análises qualitativas e quantitativas do relevo (índice de declividade média) e rede de drenagem (densidade de drenagem, freqüência de rios, razão de textura) mostraram-se eficientes na diferenciação das unidades de solo estudadas, tanto em bacias hidrográficas como em amostras circulares. A utilização de fotografias aéreas, permitiu maior riqueza de detalhes na precisão dos limites das unidades de mapeamento e no maior número de unidades de mapeamento discriminadas em relação as imagens orbitais. A composição colorida 3/4/5 permitiu diferenciar os Latossolos argilosos dos Latossolos de textura média, assim como o Latossolo Húmico.
Resumo:
This work aims to analyze the land use evolution in the city of Santa Cruz do Rio Pardo - SP through supervised classification of Landsat-5 TM satellite images according to the maximum likelihood (Maxlike), as well as verifying the mapping accuracy through Kappa index, comparing NDVI and SAVI vegetation indexes in different adjustment factors for the canopy substrate and determining the vegetal coverage percentage in all methods used on 2007, May 26 th; 2009, January 7 th and 2009, April 29 th. The Maxlike classification showed several spatial changes in land use over the study period. The most appropriated vegetation indexes were NDVI and SAVI - 0,25 factor, which showed similar values of vegetal coverage percentage, but discrepant from the inferred value for Maxlike classification.
Resumo:
Remotely sensed imagery has been widely used for land use/cover classification thanks to the periodic data acquisition and the widespread use of digital image processing systems offering a wide range of classification algorithms. The aim of this work was to evaluate some of the most commonly used supervised and unsupervised classification algorithms under different landscape patterns found in Rondônia, including (1) areas of mid-size farms, (2) fish-bone settlements and (3) a gradient of forest and Cerrado (Brazilian savannah). Comparison with a reference map based on the kappa statistics resulted in good to superior indicators (best results - K-means: k=0.68; k=0.77; k=0.64 and MaxVer: k=0.71; k=0.89; k=0.70 respectively for three areas mentioned). Results show that choosing a specific algorithm requires to take into account both its capacity to discriminate among various spectral signatures under different landscape patterns as well as a cost/benefit analysis considering the different steps performed by the operator performing a land cover/use map. it is suggested that a more systematic assessment of several options of implementation of a specific project is needed prior to beginning a land use/cover mapping job.
Resumo:
Dados de sensoriamento remoto têm sido largamente utilizados para classificação da cobertura e uso da terra, em particular graças à aquisição periódica de imagens de satélite e à generalização dos sistemas de processamento digital de imagens, que oferecem uma variedade de algoritmos de classificação de imagens. Este trabalho teve por objetivo avaliar alguns dos métodos mais comuns de classificações supervisionadas e não supervisionadas para imagens do sensor TM do satélite Landsat-5, em três áreas com diferentes padrões de paisagem em Rondônia: (1) áreas de fazendas de "Médio porte", (2) assentamentos no padrão "Espinha de peixe" e (3) áreas de contato entre floresta e "Cerrado". A comparação com um mapa de referência baseado na estatística Kappa produziu indicadores de desempenho bons ou superiores (melhores resultados - K-médias: k = 0,68; k = 0,77; k = 0,64 e MaxVer: k = 0,71; k = 0,89; k = 0,70, respectivamente nas três áreas citadas), para os algoritmos utilizados. Os resultados indicaram que a escolha de um algoritmo deve considerar tanto a capacidade de discriminar várias assinaturas espectrais em diferentes padrões de paisagem quanto a relação custo/benefício decorrente das várias etapas do trabalho dos operadores que elaboram um mapa de cobertura e uso da terra. Este trabalho apontou a necessidade de esforço mais sistemático de avaliação prévia de várias opções de execução de um projeto específico antes de se iniciar o trabalho de elaboração de um mapa de cobertura e uso da terra.
Resumo:
Algae bloom is one of the major consequences of the eutrophication of aquatic systems, including algae capable of producing toxic substances. Among these are several species of cyanobacteria, also known as blue-green algae, that have the capacity to adapt themselves to changes in the water column. Thus, the horizontal distribution of cyanobacteria harmful algae blooms (CHABs) is essential, not only to the environment, but also for public health. The use of remote sensing techniques for mapping CHABs has been explored by means of bio-optical modeling of phycocyanin (PC), a unique inland waters cyanobacteria pigment. However, due to the small number of sensors with a spectral band of the PC absorption feature, it is difficult to develop semi-analytical models. This study evaluated the use of an empirical model to identify CHABs using TM and ETM+ sensors aboard Landsat 5 and 7 satellites. Five images were acquired for applying the model. Besides the images, data was also collected in the Guarapiranga Reservoir, in São Paulo Metropolitan Region, regarding the cyanobacteria cell count (cells/mL), which was used as an indicator of CHABs biomass. When model values were analyzed excluding calibration factors for temperate lakes, they showed a medium correlation (R²=0.81, p=0.036), while when the factors were included the model showed a high correlation (R²=0.96, p=0.003) to the cyanobacteria cell count. The empirical model analyzed proved useful as an important tool for policy makers, since it provided information regarding the horizontal distribution of CHABs which could not be acquired from traditional monitoring techniques.
Resumo:
O objetivo deste trabalho foi estimar e mapear as áreas com as culturas de soja e milho, no Paraná, com uso de imagens multitemporais EVI/Modis. Foram avaliados os anos‑safra de 2004/2005 a 2007/2008. Em razão da alta dinâmica temporal e da heterogeneidade de datas de semeadura das culturas no estado, foram utilizadas cenas que contemplavam as fases de pré‑plantio e de desenvolvimento inicial das culturas, para gerar a imagem de mínimo EVI (IMIE), e cenas que consideravam o pico vegetativo das culturas, para gerar a imagem de máximo EVI (IMAE). Estas imagens foram utilizadas para gerar a composição colorida RGB (R, IMAE; GB, IMIE), o que permitiu a confecção de máscara das áreas com soja e milho. As estimativas das áreas de máscara por município foram comparadas com dados oficiais de produção agrícola municipal, tendo-se observado bons ajustes (R²>0,84, d>0,95, c>0,85) entre os dados. Para a avaliação da exatidão espacial das máscaras, imagens Landsat‑5/TM e AWiFS/IRS foram usadas como referência para construção da matriz de erros. Os resultados obtidos são indicativos de que a metodologia proposta é altamente eficiente e pode ser utilizada para mapeamento dessas culturas.
Resumo:
As atividades de exploração madeireira vêm sendo intensificadas na região amazônica, apesar dos esforços de controle e fiscalização por parte dos órgãos ambientalistas, que têm procurado estabelecer diretrizes para um uso sustentável da floresta. As imagens de satélite e as técnicas de tratamento de dados têm sido importantes ferramentas para subsidiar os processos de caracterização, inventário e monitoramento da cobertura florestal do país. Nesse contexto, o presente trabalho objetivou analisar a influência da rede viária na distribuição espacial das áreas de exploração madeireira e, inclusive, quantificar esse tipo de prática em áreas de preservação permanente. Uma área situada no Mato Grosso (MT), com intensa atividade madeireira, foi utilizada como estudo, em que os vários planos de informações, derivados de imagens Landsat/TM, foram tratados por técnicas de análise espacial, através do uso de operadores algébricos de decisão. A análise resultante demonstra uma significativa relação entre as dimensões das áreas de exploração madeireira e a proximidade da malha viária e que a espacialização das áreas de corte seletivo permite verificar que essa prática também ocorre em áreas definidas como de preservação permanente, ao lado da rede de drenagem.
Resumo:
Landsat images obtained in different periods were analysed with the aid of a transmission densitometer. Forest, pasture and crops were studied during Jan., April, July and Oct. and the results suggest the possibility of studying crop cycles using this method. -from Field Crop Abstracts