957 resultados para Imageamento. Afloramento Análogo. Laser Scanner Terrestre. GPR. Raios Gama. Minipermeâmetro. Fotomosaico. Superfícies Limitantes. Modelo Virtual de Afloramento. Parametrização. Bacia do Parnaíba
Resumo:
The aim of this work was to describe the methodological procedures that were mandatory to develop a 3D digital imaging of the external and internal geometry of the analogue outcrops from reservoirs and to build a Virtual Outcrop Model (VOM). The imaging process of the external geometry was acquired by using the Laser Scanner, the Geodesic GPS and the Total Station procedures. On the other hand, the imaging of the internal geometry was evaluated by GPR (Ground Penetrating Radar).The produced VOMs were adapted with much more detailed data with addition of the geological data and the gamma ray and permeability profiles. As a model for the use of the methodological procedures used on this work, the adapted VOM, two outcrops, located at the east part of the Parnaiba Basin, were selected. On the first one, rocks from the aeolian deposit of the Piaui Formation (Neo-carboniferous) and tidal flat deposits from the Pedra de Fogo Formation (Permian), which arises in a large outcrops located between Floriano and Teresina (Piauí), are present. The second area, located at the National Park of Sete Cidades, also at the Piauí, presents rocks from the Cabeças Formation deposited in fluvial-deltaic systems during the Late Devonian. From the data of the adapted VOMs it was possible to identify lines, surfaces and 3D geometry, and therefore, quantify the geometry of interest. Among the found parameterization values, a table containing the thickness and width, obtained in canal and lobes deposits at the outcrop Paredão and Biblioteca were the more relevant ones. In fact, this table can be used as an input for stochastic simulation of reservoirs. An example of the direct use of such table and their predicted radargrams was the identification of the bounding surface at the aeolian sites from the Piauí Formation. In spite of such radargrams supply only bi-dimensional data, the acquired lines followed of a mesh profile were used to add a third dimension to the imaging of the internal geometry. This phenomenon appears to be valid for all studied outcrops. As a conclusion, the tool here presented can became a new methodology in which the advantages of the digital imaging acquired from the Laser Scanner (precision, accuracy and speed of acquisition) were combined with the Total Station procedure (precision) using the classical digital photomosaic technique
Laser scanner terrestre: uma ferramenta eficaz para medidas de estruturas geológicas em afloramentos
Resumo:
Due to its high resolution, Ground Penetrating Radar (GPR) has been used to image subsurface sedimentary deposits. Because GPR and Seismic methods share some principles of image construction, the classic seismostratigraphic interpretation method has been also applied as an attempt to interpret GPR data. Nonetheless some advances in few particular contexts, the adaptations from seismic to GPR of seismostratigraphic tools and concepts unsuitable because the meaning given to the termination criteria in seismic stratigraphy do not represent the adequate geologic record in the GPR scale. Essentially, the open question relies in proposing a interpretation method for GPR data which allow not only relating product and sedimentary process in the GPR scale but also identifying or proposing depositional environments and correlating these results with the well known Sequence Stratigraphy cornerstones. The goal of this dissertation is to propose an interpretation methodology of GPR data able to perform this task at least for siliciclastic deposits. In order to do so, the proposed GPR interpretation method is based both on seismostratigraphic concepts and on the bounding surface hierarchy tool from Miall (1988). As consequence of this joint use, the results of GPR interpretation can be associated to the sedimentary facies in a genetic context, so that it is possible to: (i) individualize radar facies and correlate them to the sedimentary facies by using depositional models; (ii) characterize a given depositional system, and (iii) determine its stratigraphic framework highligthing how it evolved through geologic time. To illustrate its use the proposed methodology was applied in a GPR data set from Galos area which is part of the Galinhos spit, located in Rio Grande do Norte state, Northeastern Brazil. This spit presents high lateral sedimentary facies variation, containing in its sedimentary record from 4th to 6th cicles caused by high frequency sea level oscillation. The interpretation process was done throughout the following phases: (i) identification of a vertical facies succession, (ii) characterization of radar facies and its associated sedimentary products, (iii) recognition of the associated sedimentary process in a genetic context, and finally (iv) proposal of an evolutionay model for the Galinhos spit. This model proposes that the Galinhos spit is a barrier island constituted, from base to top, of the following sedimentary facies: tidal channel facies, tidal flat facies, shore facies, and aeolic facies (dunes). The tidal channel facies, in the base, is constituted of lateral accretion bars and filling deposits of the channels. The base facies is laterally truncated by the tidal flat facies. In the foreshore zone, the tidal flat facies is covered by the shore facies which is the register of a sea transgression. Finally, on the top of the stratigraphic column, aeolic dunes are deposited due to areal exposition caused by a sea regression
Resumo:
In this paper we present the methodological procedures involved in the digital imaging in mesoscale of a block of travertines rock of quaternary age, originating from the city of Acquasanta, located in the Apennines, Italy. This rocky block, called T-Block, was stored in the courtyard of the Laboratório Experimental Petróleo "Kelsen Valente" (LabPetro), of Universidade Estadual de Campinas (UNICAMP), so that from it were performed Scientific studies, mainly for research groups universities and research centers working in brazilian areas of reservoir characterization and 3D digital imaging. The purpose of this work is the development of a Model Solid Digital, from the use of non-invasive techniques of digital 3D imaging of internal and external surfaces of the T-Block. For the imaging of the external surfaces technology has been used LIDAR (Light Detection and Range) and the imaging surface Interior was done using Ground Penetrating Radar (GPR), moreover, profiles were obtained with a Gamma Ray Gamae-spectômetro laptop. The goal of 3D digital imaging involved the identification and parameterization of surface geological and sedimentary facies that could represent heterogeneities depositional mesoscale, based on study of a block rocky with dimensions of approximately 1.60 m x 1.60 m x 2.70 m. The data acquired by means of terrestrial laser scanner made available georeferenced spatial information of the surface of the block (X, Y, Z), and varying the intensity values of the return laser beam and high resolution RGB data (3 mm x 3 mm), total points acquired 28,505,106. This information was used as an aid in the interpretation of radargrams and are ready to be displayed in rooms virtual reality. With the GPR was obtained 15 profiles of 2.3 m and 2 3D grids, each with 24 sections horizontal of 1.3 and 14 m vertical sections of 2.3 m, both the Antenna 900 MHz to about 2600 MHz antenna. Finally, the use of GPR associated with Laser Scanner enabled the identification and 3D mapping of 3 different radarfácies which were correlated with three sedimentary facies as had been defined at the outset. The 6 profiles showed gamma a low amplitude variation in the values of radioactivity. This is likely due to the fact of the sedimentary layers profiled have the same mineralogical composition, being composed by carbonate sediments, with no clay in siliciclastic pellitic layers or other mineral carrier elements radioactive
Resumo:
A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of 60 mu m is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this Doctoral Thesis was monitoring, in trimestral scale, the coastal morphology of the Northeastern coast sections of Rio Grande do Norte State, in Brazil, which is an area of Potiguar Basin influenced by the oil industry activities. The studied sections compose coastal areas with intense sedimentary erosion and high environmental sensitivity to the oil spill. In order to achieve the general objective of this study, the work has been systematized in four steps. The first one refers to the evaluation of the geomorphological data acquisition methodologies used on Digital Elevation Model (DEM) of sandy beaches. The data has been obtained from Soledade beach, located on the Northeastern coast of Rio Grande Norte. The second step has been centered on the increasing of the reference geodetic infrastructure to accomplish the geodetic survey of the studied area by implanting a station in Corta Cachorro Barrier Island and by conducting monitoring geodetic surveys to understand the beach system based on the Coastline (CL) and on DEM multitemporal analysis. The third phase has been related to the usage of the methodology developed by Santos; Amaro (2011) and Santos et al. (2012) for the surveying, processing, representation, integration and analysis of Coastlines from sandy coast, which have been obtained through geodetic techniques of positioning, morphological change analysis and sediment transport. The fourth stage represents the innovation of surveys in coastal environment by using the Terrestrial Laser Scanning (TLS), based on Light Detection and Ranging (LiDAR), to evaluate a highly eroded section on Soledade beach where the oil industry structures are located. The evaluation has been achieved through high-precision DEM and accuracy during the modeling of the coast morphology changes. The result analysis of the integrated study about the spatial and temporal interrelations of the intense coastal processes in areas of building cycles and destruction of beaches has allowed identifying the causes and consequences of the intense coastal erosion in exposed beach sections and in barrier islands
Resumo:
This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.
Resumo:
L’obiettivo di questa tesi è presentare una tecnica di monitoraggio applicabile alle dune costiere, utilizzata per questo studio nella provincia di Ravenna e in particolare su di un cordone trasversale di duna costiera presente nell’area naturale adiacente alla foce del torrente Bevano nella zona di Lido di Classe. Tale tecnica si avvale dell’uso di tecnologia laser per fornire una documentazione 3D estremamente dettagliata, il quale ci permetterà di valutare come il sistema dunale si comporta di fronte ad un evento climatico estremo e/o sotto l’azione delle mareggiate, confrontando sia l’aspetto morfologico che morfometrico mediante l’uso di programmi che ci hanno permesso di confrontare i dati ottenuti prima e dopo l’evento climatico
Resumo:
A Laser Scanner System (LSS) produces a photoresponse map and can be used for the nondestructive detection of nonuniformities in the photoresponse of a semiconductor device. At SERI the photoresponse maps are used to identify solar cell faults including microcracks, metallization breaks, regions of poor contact between metallization and the underlying emitter surface, and variations in emitter sheet resistance.