994 resultados para IGF-I
Resumo:
GH-binding protein (GHBP) corresponds to the extracellular domain of the GH receptor (GHR) and has been shown to be closely related to body fat. This study aimed to examine the inter-relationship between GHBP, leptin and body fat, and to test the hypothesis that GHBP is modified by GH replacement in GH-deficient adults and predicts IGF-I response. Twenty adults, mean age 47 years (range 20-69) with proven GH deficiency were randomly allocated to either GH (up to 0.25 U/kg/week in daily doses) or placebo for 3 months before cross-over to the opposite treatment. Plasma GHBP and leptin were measured at baseline and 2, 4, 8 and 12 weeks after each treatment. Whole body composition was measured at baseline by dual-energy X-ray absorptiometry (DEXA). There was a strong correlation between baseline leptin and GHBP (r = 0.88, P < 0.0001) and between baseline GHBP and percentage body fat, (r = 0.83, P < 0.0001). Mean GHBP levels were higher on GH compared with placebo, 1.53 +/- 0.28 vs 1.41 +/- 0.25 nM, P = 0.049. There was no correlation between baseline IGF-I and GHBP (r = -0.049, P = 0.84), and GHBP did not predict IGF-I response to GH replacement. The close inter-relationship between GHBP, leptin and body fat suggests a possible role for GHBP in the regulation of body composition. GHBP is increased by GH replacement in GH-deficient adults, but does not predict biochemical response to GH replacement. (C) 1999 Churchill Livingstone.
Resumo:
Increasing evidence from human epidemiological studies suggests that poor growth before birth is associated with postnatal growth retardation and the development of cardiovascular disease in adulthood. We have shown previously that nutritional deprivation in the pregnant rat leads to intrauterine growth retardation (IUGR), postnatal growth failure, changes in the endocrine parameters of the somatotrophic axis, and to increased blood pressure in later life. In the present study, we investigated whether administration of insulin-like growth factor-I (IGF-I) or bovine growth hormone (GH) during pregnancy could prevent IUGR and/or alter long-term outcome. Dams h-om day 1 of pregnancy throughout gestation received a diet of nd libitum available food or a restricted dietary intake of 30% of ad libitum fed dams. From day 10 of gestation, dams were treated for 10 days with three times daily subcutaneous injections of saline (100 mu l), IGF-I (2 mu g/g body weight) or GH (2 mu g/g body weight). Maternal weight gain was significantly increased (P
Resumo:
Insulin-like growth factor I has similar mitogenic effects to insulin, a growth factor required by most cells in culture, and it can replace insulin in serum-free formulations for some cells. Chinese Hamster Ovary cells grow well in serum-free medium with insulin and transferrin as the only exogenous growth factors. An alternative approach to addition of exogenous growth factors to serum-free medium is transfection of host cells with growth factor-encoding genes, permitting autocrine growth. Taking this approach, we constructed an IGF-I heterologous gene driven by the cytomegalovirus promoter, introduced it into Chinese Hamster Ovary cells and examined the growth characteristics of Insulin-like growth factor I-expressing clonal cells in the absence of the exogenous factor. The transfected cells secreted up to 500 ng/10(6) cells/day of mature Insulin-like growth factor I into the conditioned medium and as a result they grew autonomously in serum-free medium containing transferrin as the only added growth factor. This growth-stimulating effect, observed under both small and large scale culture conditions, was maximal since no further improvement was observed in the presence of exogenous insulin.
Resumo:
Our data suggest that serum concentrations of insulin-like growth factor I and insulin-like growth factor binding protein 3 do not correlate with breast cancer development. (Fertil Steril (R) 2011;95:2753-5. (C)2011 by American Society for Reproductive Medicine.)
Resumo:
Biochemical markers for remission on acromegaly activity are controversial. We studied a subset of treated acromegalic patients with discordant nadir GH levels after oral glucose tolerance test (oGTT) and IGF-I values to refine the current consensus on acromegaly remission. We also compared GH results by two GH immunoassays. From a cohort of 75 treated acromegalic patients, we studied 13 patients who presented an elevated IGF-I despite post-oGTT nadir GH of <= 1 mu g/l. The 12-h daytime GH profile (GH-12 h), nadir GH after oGTT, and basal IGF-I levels were studied in patients and controls. Bland-Altman method showed high concordance between GH assays. Acromegalic patients showed higher mean GH-12 h values (0.71+/-0.36 vs. 0.31+/-0.28 mu g/l; p<0.05) and nadir GH after oGTT (0.48+/-0.32 vs. 0.097+/-0.002 mu g/l; p<0.05) as compared to controls. Nadir GH correlated with mean GH-12 h (r=0.92, p<0.05). The mean GH-12 h value from upper 95% CI of controls (0.54 mu g/l) would correspond to a theoretical normal nadir GH of <= 0.27 mu g/l. Patients with GH nadir <= 0.3 mu g/l had IGF-I between 100-130% ULNR (percentage of upper limit of normal range) and mean GH-12 h of 0.35+/-0.15, and patients with GH nadir >0.3 and <= 1 mu g/l had IGF-I >130% ULNR and mean GH-12 h of 0.93+/-0.24 mu g/l. Our data integrate daytime GH secretion, nadir GH after oGTT, and plasma IGF-I concentrations showing a continuum of mild residual activity in a subgroup of treated acromegaly with nadir GH values <= 1 mu g/l. The degree of increased IGF-I levels and nadir GH after oGTT are correlated with the subtle abnormalities of daytime GH secretion.
Resumo:
El factor de crecimiento similar a insulina-I (IGF-I) es una hormona peptídica que participa en el crecimiento animal, desarrollo de los tejidos y diferenciación. Hay un creciente cuerpo de evidencias que indican que esta hormona es también importante en la regulación del desarrollo del sistema nervioso. (...) Este factor de crecimiento ejerce sus acciones interaccionando con un receptor heterotetramérico similar al receptor de insulina. b-gc es una subunidad b novedosa del receptor de IGF-I, típica del sistema nervioso central y enriquecida en conos de crecimiento neural. Los objetivos del presente proyecto consisten en: a) Caracterización molecular de b-gc mediante clonado y secuenciado del cDNA que codifica su biosíntesis; b) Caracterización bioquímica de las vesículas que transportan bgc en neuronas en desarrollo desde el aparato de Golgi hacia el cono de crecimiento neural; c) Estudio de la expresión y distribución de bgc en células nerviosas no neuronales, como oligodendrocitos y astrocitos. (...) La caracterización molecular de los receptores de IGF-I conteniendo b-gc y que presenta una distribución muy interesante durante el desarrollo del sistema nervioso central, puede aportar datos fundamentales para la comprensión de la función de estos receptores y su correspondiente hormona durante el desarrollo del sistema nervioso y su transporte específico a los conos de crecimiento neural. La caracterización bioquímica de las vesículas conteniendo b-gc puede aportar importantes datos sobre la presencia de diferentes tipos de vesículas de transporte no sinápticas, como surge de resultados obtenidos recientemente.
Resumo:
O hormônio de crescimento (GH), principal regulador do crescimento pós-natal, tem importantes ações metabólicas em diferentes tecidos, sinérgicas ou até antagônicas às do fator de crescimento semelhante à insulina tipo I (IGF-I), produzido sobretudo no fígado após ligação do GH ao seu receptor. Experimentos em modelos animais indicam um papel importante do GH na resistência a insulina, enquanto o papel do IGF-I nessa condição ainda não está completamente elucidado. Em humanos, o GH promove aumento da lipólise e da oxidação lipídica, enquanto o IGF-I desencadeia o aumento da oxidação lipídica apenas cronicamente. Enquanto as ações sobre o crescimento são tempo limitado, as ações metabólicas e cardiovasculares do eixo GH/IGF-I perduram durante toda a vida. Os potenciais efeitos anabólicos do GH têm sido utilizados em condições crônicas e hipercatabólicas, embora as investigações sobre os desfechos clínicos ainda sejam escassas. Neste artigo, pretendemos revisar as ações metabólicas do GH oriundas de modelos animais, os estudos em humanos normais e indivíduos com deficiência de GH, diabete melito tipo 1, síndrome metabólica, estados hipercatabólicos e a relação do eixo GH/IGF-I com as adipocinas, disfunção endotelial e aterogênese
Resumo:
Addition of insulin, IGF I or IGF II to serum-free cultures of fetal rat brain cells (gestation day 15/16) significantly stimulates DNA synthesis. The dose-response curves show that IGF I is more potent than insulin; half maximal stimulation of [3H]thymidine incorporation is obtained at about 0.4 nM IGF I and 14 nM insulin, respectively. Cultures initiated 2 days later (gestation day 17/18) showed a decreased responsiveness to both peptides. No additive effect was observed after combined addition of both peptides at near-maximal doses. Both peptides show a latency of action of about 12-18 h. In the presence of either IGF or insulin, neuronal as well as glial enzymes are increased, suggesting that neuronal and glial precursor cell division is influenced. IGF I and IGF II interact with a specific binding site for which insulin competes very weakly; however IGF I and IGF II bind with relatively high affinity to the insulin specific binding site. The present results support the hypothesis that both insulin and IGF stimulate mitotic activity by interacting with specific somatomedin receptors and suggest a physiological role of IGF in the developing brain.
Resumo:
The aim of this study was to investigate the effects of the insulin-like growth factor -I (IGF-I) on survival, activation (transition from primordial to primary follicles) and growth of caprine preantral follicles cultured in vitro. Fragments of ovarian cortex were cultured for one and seven days in the absence or presence of IGF-I (0, 50 and 100ng/ml). The non-cultured and cultured tissues were processed and analyzed by histology and transmission electron microscopy. The culture for one day in a medium with 100ng/ml of IGF-I showed 86.7% of morphologically normal follicles. These results were similar (P>0.05) to the percentage of normal follicles found in the control (96.7%). It was also found that this medium increased the percentage of follicular activation (developing follicles) with one day of culture. The oocyte and follicular diameters remained similar to the control by culturing for one day in a medium containing 100ng/ml of IGF-I. The ultrastructural analysis did not confirm the integrity of the follicular fragments in a medium containing IGF-I (100ng/ml) after one and seven days of culture. In conclusion, this study demonstrated that the addition of 100 ng/ml of IGF-I in the culture medium enables the development of preantral follicles of goats with one day of culture. However, it is not sufficient to maintain the follicular integrity and the follicular survival rate after seven days of culture.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
Objective: Beta-hydroxy-beta-methylbutyrate (HM beta) is a metabolite of leucine widely used for improving sports performance. Although limp is recognized to promote anabolic or anti-catabolic effects on protein metabolism, the impact of its long-term use on skeletal muscle and/or genes that control the skeletal protein balance is not fully known. This study aimed to investigate whether chronic HM beta treatment affects the activity of GH/IGF-I axis and skeletal muscle IGF-I and myostatin mRNA expression. Design: Rats were treated with HK beta (320 mg/kg BW) or vehicle, by gavage, for 4 weeks, and killed by decapitation. Blood was collected for evaluation of serum insulin, glucose and IGF-I concentrations. Samples of pituitary, liver, extensor digitorum longus (EDL) and soleus muscles were collected for total RNA or protein extraction to evaluate the expression of pituitary growth hormone (GH) gene (mRNA and protein), hepatic insulin-like growth factor I (IGF-I) mRNA, skeletal muscle IGF-I and myostatin mRNA by Northern blotting/real time-PCR, or Western blotting. Results: Chronic HM beta treatment increased the content of pituitary GH mRNA and GH, hepatic IGF-I mRNA and serum IGF-I concentration. No changes were detected on skeletal muscle IGF-I and myostatin mRNA expression. However, the HIM-treated rats although normoglycemic, exhibited hyperinsulinemia. Conclusions: The data presented herein extend the body of evidence on the potential role of HM beta-treatment in stimulating GH/IGF-I axis activity. In spite of this effect, HM beta supplementation also induces an apparent insulin resistance state which might limit the beneficial aspects of the former results, at least in rats under normal nutritional status and health conditions. (C) 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.