918 resultados para Hydrolysis kinetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrolysis kinetics of atropine sulphate has been investigated by cyclic voltammetry at the water/nitrobenzene interface. The transfer process is diffusion controlled and the transfer species is a 1:1 proton-atropine complex. Two main factors, pH and temperature, which have notable effects on the hydrolysis rate, are illustrated. The most suitable pH for atropine to be preserved in aqueous solution and related parameters were estimated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experimental oligomer profiles. The efficacy of mathematical models as hydrolysis yield predictors and as vehicles for investigating the mechanisms of acid hydrolysis is also examined. Experimental xylose, oligomer (degree of polymerisation 2 to 6) and furfural yield profiles were obtained for bagasse under dilute acid hydrolysis conditions at temperatures ranging from 110C to 170C. Population balance kinetics, diffusion and porosity evolution were incorporated into a mathematical model of the acid hydrolysis of sugarcane bagasse. This model was able to produce a good fit to experimental xylose yield data with only three unknown kinetic parameters ka, kb and kd. However, fitting this same model to an expanded data set of oligomeric and furfural yield profiles did not successfully reproduce the experimental results. It was found that a ``hard-to-hydrolyse'' parameter, $\alpha$, was required in the model to ensure reproducibility of the experimental oligomer profiles at 110C, 125C and 140C. The parameters obtained through the fitting exercises at lower temperatures were able to be used to predict the oligomer profiles at 155C and 170C with promising results. The interpretation of kinetic parameters obtained by fitting a model to only a single set of data may be ambiguous. Although these parameters may correctly reproduce the data, they may not be indicative of the actual rate parameters, unless some care has been taken to ensure that the model describes the true mechanisms of acid hydrolysis. It is possible to challenge the robustness of the model by expanding the experimental data set and hence limiting the parameter space for the fitting parameters. The novel combination of ``hard-to-hydrolyse'' and population balance dynamics in the model presented here appears to stand up to such rigorous fitting constraints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2%) within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clavulanic acid (CA), a potent beta-lactamase inhibitor, is very sensitive to pH and temperature. It is produced by Streptomyces clavuligerus and to optimize both the fermentation step and the downstream process, the expression of the hydrolysis kinetics has to be determined. In the present work the CA degradation rate from various sources was investigated at temperatures of 10, 20, 25, 30 and 40degreesC and PH values of 6.2 and 7.0. The results showed that first-order kinetics explained very well the hydrolysis kinetics and the Arrhenius equation could be applied to establish a relationship between the degradation rate constant and temperature, at both pHs. It has been observed that CA from fermentation medium was much more unstable than that from standard solution and from a commercially available medicine. Also, it was observed that CA was more stable at PH 6.2 than at pH 7.0, irrespective of the CA source. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intra- and intermolecular rates of degradation of cephaclor were determined with and without hexadecyltrimethylammonium bromide (CTABr). Micellar-derived spectral shifts were used to measure the association of the ionic forms as well as to determine the effect of CTABr on the apparent acid dissociation constant of the antibiotic. The rate of degradation of cephaclor increased with detergent and was salt sensitive. Micellar effects were analyzed quantitatively within the frame-work of the speudophase ion exchange model. All experimental data were fitted to this model which was used to predict the combined effects of pH and detergent concentration. Micelles increased the rate of OH- attack on cephaclor; most of the effect was due to the concentration of reagents in the micellar pseudophase. The intramolecular degradation was catalyzed 25-fold by micelles, and a working hypothesis to rationalize this effect is proposed. The results demonstrate that quantitative analysis can be utilized to assess and predict effects of detergents on drug stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strain of the flamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3, 0.5% NaCl, 0.1% NH4Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A low-cost hemicellulose residue (powdered corncob) proved to be an excellent inducer of the A. niger xylanolytic complex. Filtration of the crude culture medium with suspended kaolin was ideal for to clarify the extract and led to partial purifcation of the xylanolytic activity. The apparent molecular mass of the xylanase was about 32.3 kDa. Maximum enzyme activity occurred at pH 5.0 and 55-60oC. Apparent Km was 10.41 ± 0.282 mg/mL and Vmax was 3.32 ± 0.053 U/mg protein, with birchwood xylan as the substrate. Activation energy was 4.55 kcal/mol and half-life of the crude enzyme at 60oC was 30 minutes. Addition of 2% glucose to the culture medium supplemented with xylan repressed xylanase production, but in the presence of xylose the enzyme production was not affected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invertase from Saccharomyces cerevisiae was immobilized on agarose beads, activated with various groups (glyoxyl, MANAE or glutaraldehyde), and on some commercial epoxy supports (Eupergit and Sepabeads). Very active and stable invertase derivatives were produced by the adsorption of the enzyme on MANAE-agarose, MANAE-agarose treated with glutaraldhyde and glutaraldehyde-agarose supports. At pH 5.0, these derivatives retained full activity after 24h at 40°C and 50 °C. When assayed at 40°C and 50°C, with the pH adjusted to 7.0, the invertase-MANAE-agarose derivative treated with glutaraldehyde retained 80% of the initial activity. Recovered activities of the derivatives produced with MANAE, MANAE treated with glutaraldehyde and glutaraldehyde alone were 73.5%, 44.4% and 36.8%, respectively. These three preparations were successfully employed to produce glucose and fructose in 3 cycles of sucrose hydrolysis.