957 resultados para Hydraulic gates.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One observed vibration mode for Tainter gate skinplates involves the bending of the skinplate about a horizontal nodal line. This vibration mode can be approximated as a streamwise rotational vibration about the horizontal nodal line. Such a streamwise rotational vibration of a Tainter gate skinplate must push away water from the portion of the skinplate rotating into the reservoir and draw water toward the gate over that portion of the skinplate receding from the reservoir. The induced pressure is termed the push-and-draw pressure. In the present paper, this push-and-draw pressure is analyzed using the potential theory developed for dissipative wave radiation problems. In the initial analysis, the usual circular-arc skinplate is replaced by a vertical, flat, rigid weir plate so that theoretical calculations can be undertaken. The theoretical push-and-draw pressure is used in the derivation of the non-dimensional equation of motion of the flow-induced rotational vibrations. Non-dimensionalization of the equation of motion permits the identification of the dimensionless equivalent added mass and the wave radiation damping coefficients. Free vibration tests of a vertical, flat, rigid weir plate model, both in air and in water, were performed to measure the equivalent added mass and the wave radiation damping coefficients. Experimental results compared favorably with the theoretical predictions, thus validating the theoretical analysis of the equivalent added mass and wave radiation damping coefficients as a prediction tool for flow-induced vibrations. Subsequently, the equation of motion of an inclined circular-arc skinplate was developed by incorporating a pressure correction coefficient, which permits empirical adaptation of the results from the hydrodynamic pressure analysis of the vertical, flat, rigid weir plate. Results from in-water free vibration tests on a 1/31-scale skinplate model of the Folsom Dam Tainter gate are used to demonstrate the utility of the equivalent added mass coefficient.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scour around hydraulic structures is a critical problem in hydraulic engineering. Under prediction of scour depth may lead to costly failures of the structure, while over prediction might result in unnecessary costs. Unfortunately, up-to-date empirical scour prediction formulas are based on laboratory experiments that are not always able to reproduce field conditions due to complicated geometry of rivers and temporal and spatial scales of a physical model. However, computational fluid dynamics (CFD) tools can perform using real field dimensions and operating conditions to predict sediment scour around hydraulic structures. In Korea, after completing the Four Major Rivers Restoration Project, several new weirs have been built across Han, Nakdong, Geum and Yeongsan Rivers. Consequently, sediment deposition and bed erosion around such structures have became a major issue in these four rivers. In this study, an application of an open source CFD software package, the TELEMAC-MASCARET, to simulate sediment transport and bed morphology around Gangjeong weir, which is the largest multipurpose weir built on Nakdong River. A real bathymetry of the river and a geometry of the weir have been implemented into the numerical model. The numerical simulation is carried out with a real hydrograph at the upstream boundary. The bedmorphology obtained from the numerical results has been validated against field observation data, and a maximum of simulated scour depth is compared with the results obtained by empirical formulas of Hoffmans. Agreement between numerical computations, observed data and empirical formulas is judged to be satisfactory on all major comparisons. The outcome of this study does not only point out the locations where deposition and erosion might take place depending on the weir gate operation, but also analyzes the mechanism of formation and evolution of scour holes after the weir gates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of adding glycerol carbonate (GC) or propylene carbonate (PC) to sodium (Na)-bentonite on the hydraulic performance of geosynthetic clay liners (GCLs) under hypersaline conditions is examined. Fluid loss (FL), swell index (SI) and solution retention capacity (SRC) measurements were carried out to compare the potential hydraulic performance of these two cyclic organic carbonates (COCs) as bentonite modifiers. A modified FL test enabled quantitative measurement of both the water retention characteristics of untreated and COC modified bentonites as well as calculation of hydraulic conductivity values. Tests under aggressively saline conditions (ionic strength, I ≥ 1 M of NaCl and ≥3 M of CaCl2) showed that at a mass ratio of 1:1 (GC to bentonite), the FL of a GC-Na-bentonite was ≈40–104 mL in NaCl and ≈61–91 mL in CaCl2. This was about 10–20 mL and 70–200 mL, respectively, lower than that of a comparable PC-Na-bentonite (1:1 PC to bentonite) and untreated Na-bentonite. Greater swelling (SI) and greater solution retention capacity (SRC) was observed for the GC treated Na-bentonite compared to untreated Na-bentonite in all salt solutions, and for PC-Na-bentonite at high ionic strength of both NaCl and CaCl2 solutions, demonstrating the superior hydraulic barrier performance of COC-bentonites under severely saline conditions. Experiments conducted in flexible-wall permeameters with I = 3 M CaCl2 showed approximately one order of magnitude lower (∼10−11 m/s vs ∼1.9 × 10−10 m/s) hydraulic conductivity of GC treated bentonite cake compared to the k value of the untreated Na-bentonite cake. Calculated hydraulic conductivity from fluid loss tests estimated the measured values in a conservative way (overestimation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the performance of bentonite components of geosynthetic clay liners (GCLs) when exposed to aggressive leachates using the fluid loss test and provides a possible quick method for estimating the effect of acidic conditions on hydraulic conductivity. Fluid loss generally increases with increasing acid concentrations. Hydraulic conductivity values back-calculated from the fluid loss tests (kFL) are compared with the values measured using a flexible-wall permeameter (kTri).Generally, the predicted hydraulic conductivity values are conservative (kFL/kTri > 1) under water and low acid concentrations(≤0.015 mol/L). However, the back-calculated hydraulic conductivity is shown to be nonconservative (kFL/kTri < 1) at high acid concentrations (≥0.125 mol/L).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of geosynthetic clay liners (GCLs) to contain acidic mining leachates is examined. The results of saturated hydraulic conductivity (k) of two GCLs permeated with sulfuric acid solutions (H2SO4) at 0.015M, 0.125M and 0.5M concentrations are reported. Also, the saturated k values of consolidated (35kPa) bentonite cakes made from sodium bentonite extracted from both GCLs were compared to a commonly used magnesium-sodium form bentonite. Chemical compatibility and effects of pre-hydration and effective stress were assessed as part of this study. Results indicated that an increased acid concentration (ionic strength) increased the k of all tested specimens. The ratio of the k0.5 values for non-prehydrated specimens permeated with 0.5M H2SO4 to the kw values for specimens permeated with deionized (DI) water (k0.5/kw) ranged from 10 to 110. Pre-hydration (50-140% water content) and increased effective stress (35-200kPa) improved the performance of GCLs (lower k). Strong correlations were observed between k and liquid limit and swell index parameters independent of pre-hydration and effective stress in this study. However, care should still be taken when using these correlations to evaluate hydraulic performance because the intrinsic micro-structure properties of bentonite, such as porosity, should also be considered. This work showed that, for example, high SI of bentonite does not translate necessarily to a better hydraulic performance of GCLs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presents a unified and systematic assessment of ten position control strategies for a hydraulic servo system with single-ended cylinder driven by a proportional directional control valve. We aim at identifying those methods that achieve better tracking, have a low sensitivity to system uncertainties, and offer a good balance between development effort and end results. A formal approach for solving this problem relies on several practical metrics, which is introduced herein. Their choice is important, as the comparison results between controllers can vary significantly, depending on the selected criterion. Apart from the quantitative assessment, we also raise aspects which are difficult to quantify, but which must stay in attention when considering the position control problem for this class of hydraulic servo systems.