871 resultados para Human and computer interaction
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
Human-like computer interaction systems requires far more than just simple speech input/output. Such a system should communicate with the user verbally, using a conversational style language. It should be aware of its surroundings and use this context for any decisions it makes. As a synthetic character, it should have a computer generated human-like appearance. This, in turn, should be used to convey emotions, expressions and gestures. Finally, and perhaps most important of all, the system should interact with the user in real time, in a fluent and believable manner.
Resumo:
User Quality of Experience (QoE) is a subjective entity and difficult to measure. One important aspect of it, User Experience (UX), corresponds to the sensory and emotional state of a user. For a user interacting through a User Interface (UI), precise information on how they are using the UI can contribute to understanding their UX, and thereby understanding their QoE. As well as a user’s use of the UI such as clicking, scrolling, touching, or selecting, other real-time digital information about the user such as from smart phone sensors (e.g. accelerometer, light level) and physiological sensors (e.g. heart rate, ECG, EEG) could contribute to understanding UX. Baran is a framework that is designed to capture, record, manage and analyse the User Digital Imprint (UDI) which, is the data structure containing all user context information. Baran simplifies the process of collecting experimental information in Human and Computer Interaction (HCI) studies, by recording comprehensive real-time data for any UI experiment, and making the data available as a standard UDI data structure. This paper presents an overview of the Baran framework, and provides an example of its use to record user interaction and perform some basic analysis of the interaction.
Resumo:
Since children already use and explore applications on smartphones, we use this as the starting point for design. Our monitoring and analysis framework, BaranC, enables us to discover and analyse which applications children uses and precisely how they interact with them. The monitoring happens unobtrusively in the background so children interact normally in their own natural environment without artificial constraints. Thus, we can discover to what extent a child of a particular age engages with, and how they physically interact with, existing applications. This information in turn provides the basis for design of new child-centred applications which can then be subject to the same comprehensive child use analysis using our framework. The work focuses on the first aspect, namely, the monitoring and analysis of current child use of smartphones. Experiments show the value of this approach and interesting results have been obtained from this precise monitoring of child smartphone usage.
Resumo:
For the purpose of human-computer interaction (HCI), a vision-based gesture segmentation approach is proposed. The technique essentially includes skin color detection and gesture segmentation. The skin color detection employs a skin-color artificial neural network (ANN). To merge and segment the region of interest, we propose a novel mountain algorithm. The details of the approach and experiment results are provided. The experimental segmentation accuracy is 96.25%. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
The Human-Computer Interaction (HCI) with interfaces is an active challenge field in the industry over the past decades and has opened the way to communicate with the means of verbal, hand and body gestures using the latest technologies for a variety of different applications in areas such as video games, training and simulation. However, accurate recognition of gestures is still a challenge. In this paper, we review the basic principles and current methodologies used for collecting the raw gesture data from the user for recognize actions the users perform and the technologies currently used for gesture-HCI in games enterprise. In addition, we present a set of projects from various applications in games industry that are using gestural interaction.
Resumo:
Handheld and mobile technologies have witnessed significant advances in functionality, leading to their widespread use as both business and social networking tools. Human-Computer Interaction and Innovation in Handheld, Mobile and Wearable Technologies reviews concepts relating to the design, development, evaluation, and application of mobile technologies. Studies on mobile user interfaces, mobile learning, and mobile commerce contribute to the growing body of knowledge on this expanding discipline.
Resumo:
Support Vector Machines (SVMs) are widely used classifiers for detecting physiological patterns in Human-Computer Interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the application of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables, and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.
Resumo:
Distraction in the workplace is increasingly more common in the information age. Several tasks and sources of information compete for a worker's limited cognitive capacities in human-computer interaction (HCI). In some situations even very brief interruptions can have detrimental effects on memory. Nevertheless, in other situations where persons are continuously interrupted, virtually no interruption costs emerge. This dissertation attempts to reveal the mental conditions and causalities differentiating the two outcomes. The explanation, building on the theory of long-term working memory (LTWM; Ericsson and Kintsch, 1995), focuses on the active, skillful aspects of human cognition that enable the storage of task information beyond the temporary and unstable storage provided by short-term working memory (STWM). Its key postulate is called a retrieval structure an abstract, hierarchical knowledge representation built into long-term memory that can be utilized to encode, update, and retrieve products of cognitive processes carried out during skilled task performance. If certain criteria of practice and task processing are met, LTWM allows for the storage of large representations for long time periods, yet these representations can be accessed with the accuracy, reliability, and speed typical of STWM. The main thesis of the dissertation is that the ability to endure interruptions depends on the efficiency in which LTWM can be recruited for maintaing information. An observational study and a field experiment provide ecological evidence for this thesis. Mobile users were found to be able to carry out heavy interleaving and sequencing of tasks while interacting, and they exhibited several intricate time-sharing strategies to orchestrate interruptions in a way sensitive to both external and internal demands. Interruptions are inevitable, because they arise as natural consequences of the top-down and bottom-up control of multitasking. In this process the function of LTWM is to keep some representations ready for reactivation and others in a more passive state to prevent interference. The psychological reality of the main thesis received confirmatory evidence in a series of laboratory experiments. They indicate that after encoding into LTWM, task representations are safeguarded from interruptions, regardless of their intensity, complexity, or pacing. However, when LTWM cannot be deployed, the problems posed by interference in long-term memory and the limited capacity of the STWM surface. A major contribution of the dissertation is the analysis of when users must resort to poorer maintenance strategies, like temporal cues and STWM-based rehearsal. First, one experiment showed that task orientations can be associated with radically different patterns of retrieval cue encodings. Thus the nature of the processing of the interface determines which features will be available as retrieval cues and which must be maintained by other means. In another study it was demonstrated that if the speed of encoding into LTWM, a skill-dependent parameter, is slower than the processing speed allowed for by the task, interruption costs emerge. Contrary to the predictions of competing theories, these costs turned out to involve intrusions in addition to omissions. Finally, it was learned that in rapid visually oriented interaction, perceptual-procedural expectations guide task resumption, and neither STWM nor LTWM are utilized due to the fact that access is too slow. These findings imply a change in thinking about the design of interfaces. Several novel principles of design are presented, basing on the idea of supporting the deployment of LTWM in the main task.
Resumo:
Accurate head tilt detection has a large potential to aid people with disabilities in the use of human-computer interfaces and provide universal access to communication software. We show how it can be utilized to tab through links on a web page or control a video game with head motions. It may also be useful as a correction method for currently available video-based assistive technology that requires upright facial poses. Few of the existing computer vision methods that detect head rotations in and out of the image plane with reasonable accuracy can operate within the context of a real-time communication interface because the computational expense that they incur is too great. Our method uses a variety of metrics to obtain a robust head tilt estimate without incurring the computational cost of previous methods. Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB of RAM and an inexpensive webcam, using only 55% of the processor cycles.
Resumo:
Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.