966 resultados para Horizontal longline fishing
Resumo:
The main objectives of the present study have been studies on the operational performance of tuna longline in Lakshadweep Sea studies on the efficiency of hooks in the longline operation studies on the efficiency of baits in the longline operation studies on bycatch in longline operation studies on predation on the longline catch and the hook loss encountered during the fishing operation
Resumo:
The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.
Resumo:
The present report was prepared to evaluate the performance of two fishing vessels, study trends in fishing condition, the status of the stocks exploited and also to contribute basic information required by the Indian Ocean Fisheries Commission for management of the tuna resources.
Resumo:
Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat ‘hotspots’ of high space use. Movement modelling showed sharks preferred habitats characterised by strong sea-surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge south-west of the Azores. In these main regions, and sub-areas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently ‘tracks’ oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.
Resumo:
Pelagic longliners targeting swordfish and tunas in oceanic waters regularly capture sharks as bycatch, including currently protected species as the bigeye thresher, Alopias superciliosus. Fifteen bigeye threshers were tagged with pop-up satellite archival tags (PSATs) in 2012-2014 in the tropical northeast Atlantic, with successful transmissions received from 12 tags for a total of 907 tracking days. Marked diel vertical movements were recorded on all specimens, with most of the daytime spent in deeper colder water (mean depth = 353 m, SD = 73; mean temperature = 10.7 °C, SD = 1.8) and nighttime spent in warmer water closer to the surface (mean depth = 72 m, SD = 54; mean temperature = 21.9 °C, SD = 3.7). The operating depth of the pelagic longline gear was measured with Minilog Temperature and Depth Recorders (TDRs), and the overlap with habitat utilization was calculated. Overlap is taking place mainly during the night and is higher for juveniles. The results presented herein can be used as inputs for Ecological Risk Assessments for bigeye threshers captured in oceanic tuna fisheries, and serve as a basis for efficient management and conservation of this vulnerable shark species.
Resumo:
From 2001 to 2006, 71 pop-up satellite archival tags (PSATs) were deployed on five species of pelagic shark (blue shark [Prionace glauca]; shortfin mako [Isurus oxyrinchus]; silky shark [Carcharhinus falciformis]; oceanic whitetip shark [C. longimanus]; and bigeye thresher [Alopias superciliosus]) in the central Pacific Ocean to determine species-specific movement patterns and survival rates after release from longline fishing gear. Only a single postrelease mortality could be unequivocally documented: a male blue shark which succumbed seven days after release. Meta-analysis of published reports and the current study (n=78 reporting PSATs) indicated that the summary effect of postrelease mortality for blue sharks was 15% (95% CI, 8.5–25.1%) and suggested that catch-and-release in longline fisheries can be a viable management tool to protect parental biomass in shark populations. Pelagic sharks displayed species-specific depth and temperature ranges, although with significant individual temporal and spatial variability in vertical movement patterns, which were also punctuated by stochastic events (e.g., El Niño-Southern Oscillation). Pelagic species can be separated into three broad groups based on daytime temperature preferences by using the unweighted pair-group method with arithmetic averaging clustering on a Kolmogorov-Smirnov Dmax distance matrix: 1) epipelagic species (silky and oceanic whitetip sharks), which spent >95% of their time at temperatures within 2°C of sea surface temperature; 2) mesopelagic-I species (blue sharks and shortfin makos, which spent 95% of their time at temperatures from 9.7° to 26.9°C and from 9.4° to 25.0°C, respectively; and 3) mesopelagic-II species (bigeye threshers), which spent 95% of their time at temperatures from 6.7° to 21.2°C. Distinct thermal niche partitioning based on body size and latitude was also evident within epipelagic species.
Resumo:
Commercial longline fishing data were analyzed and experiments were conducted with gear equipped with hook timers and timedepth recorders in the Réunion Island fishery (21°5ʹS lat., 53°28ʹE long.) to elucidate direct and indirect effects of the lunar cycle and other operational factors that affect catch rates, catch composition, fish behavior, capture time, and fish survival. Logbook data from 1998 through 2000, comprising 2009 sets, indicated that swordfish (Xiphias gladius) catch-per unit of effort (CPUE) increased during the first and last quarter of the lunar phase, whereas albacore (Thunnus alalunga) CPUE was highest during the full moon. Swordfish were caught rapidly after the longline was set and, like bigeye tuna (Thunnus obesus), they were caught during days characterized by a weak lunar illumination—mainly during low tide. We found a significant but very low influence of chemical lightsticks on CPUE and catch composition. At the time the longline was retrieved, six of the 11 species in the study had >40% survival. Hook timers indicated that only 8.4% of the swordfish were alive after 8 hours of capture, and two shark species (blue shark [Prionace glauca] and oceanic whitetip shark [Carcharhinus longimanus]) showed a greater resilience to capture: 29.3% and 23.5% were alive after 8 hours, respectively. Our results have implications for current fishing practices and we comment on the possibilities of modifying fishing strategies in order to reduce operational costs, bycatch, loss of target fish at sea, and detrimental impacts on the environment.
Resumo:
Previous studies indicate that elasmobranch fishes (sharks, skates and rays) detect the Earth’s geomagnetic field by indirect magnetoreception through electromagnetic induction, using their ampullae of Lorenzini. Applying this concept, we evaluated the capture of elasmobranchs in the presence of permanent magnets in hook-and-line and inshore longline fishing experiments. Hooks with neodymium-iron-boron magnets significantly reduced the capture of elasmobranchs overall in comparison with control and procedural control hooks in the hook-and-line experiment. Catches of Atlantic sharpnose shark (Rhizoprionodon terraenovae) and smooth dogfish (Mustelus canis) were signif icantly reduced with magnetic hook-and-line treatments, whereas catches of spiny dogfish (Squalus acanthias) and clearnose skate (Raja eglanteria) were not. Longline hooks with barium-ferrite magnets significantly reduced total elasmobranch capture when compared with control hooks. In the longline study, capture of blacktip sharks (Carcharhinus limbatus) and southern stingrays (Dasyatis americana) was reduced on magnetic hooks, whereas capture of sandbar shark (Carcharhinus plumbeus) was not affected. Teleosts, such as red drum (Sciaenops ocellatus), Atlantic croaker (Micropogonias undulatus), oyster toadfish (Opsanus tau), black sea bass (Centropristis striata), and the bluefish (Pomatomas saltatrix), showed no hook preference in either hook-and-line or longline studies. These results indicate that permanent magnets, although eliciting species-specific capture trends, warrant further investigation in commercial longline and recreational fisheries, where bycatch mortality is a leading contributor to declines in elasmobranch populations.
Resumo:
To estimate postrelease survival of white marlin (Tetrapturus albidus) caught incidentally in regular commercial pelagic longline fishing operations targeting swordfish and tunas, short-duration popup satellite archival tags (PSATs) were deployed on captured animals for periods of 5−43 days. Twenty (71.4%) of 28 tags transmitted data at the preprogrammed time, including one tag that separated from the fish shortly after release and was omitted from subsequent analyses. Transmitted data from 17 of 19 tags were consistent with survival of those animals for the duration of the tag deployment. Postrelease survival estimates ranged from 63.0% (assuming all nontransmitting tags were evidence of mortality) to 89.5% (excluding nontransmitting tags from the analysis). These results indicate that white marlin can survive the trauma resulting from interaction with pelagic longline gear, and indicate that current domestic and international management measures requiring the release of live white marlin from this fishery will reduce fishing mortality on the Atlantic-wide stock.
Resumo:
Results of recent seabird bycatch studies in the International Commission for the Conservation of Atlantic Tunas Convention Area were combined to estimate total seabird bycatch of pelagic longline fishing in the Atlantic Ocean, and bycatch per selected species. Available studies do not apply to the full spatial and temporal extent of the fishing effort, so assumptions were made to account for missing information. Over the 4 years from 2003 to 2006 the total seabird bycatch estimate was 48,500. Results indicate that about 57% of the pelagic longline seabird bycatch was albatrosses (Diomedea, Phoebastria, Thalassarche, Phoebetria spp.). This mortality is at a level to cause concern for the smaller and more vulnerable albatross populations in the region. Variation in annual seabird bycatch was caused by variation in total fishing effort, and movement of effort away from areas of higher seabird bycatch rates.
Resumo:
The length-weight relationship of 29 marine fish species form Reunion Island (SW Indian Ocean) belonging to 14 families were computed. Data from 5,340 individuals were used for this purpose. Fish were sampled using different techniques, mainly with rotenone poisoning on coral reef flats, beach seine and handlines on shallow coastal bays, and longline fishing in the nearby open sea.
Resumo:
Length-weight relationships of 316 reef and lagoon fish from New Caledonia (SW Pacific Ocean) belonging to 68 families are computed. A total of 43,750 individuals was used for this purpose. Fish were sampled by different techniques such as rotenone poisoning, handline and bottom longline fishing, gill and trammel nets, and trawling in various isotopes (coral reefs, lagoon bottoms and mangroves).
Resumo:
Age and growth of the swordfish (Xiphias gladius) in Taiwan waters was studied from counts of growth bands on cross sections of the second ray of the first anal fin. Data on lower jaw fork length and weight, and samples of the anal fin of male and female swordfish were collected from three offshore and coastal tuna longline fishing ports on a monthly basis between September 1997 and March 1999. In total, 685 anal fins were collected and 627 of them (293 males and 334 females) were aged successfully. The lower jaw fork lengths of the aged individuals ranged from 83.4 to 246.6 cm for the females and from 83.3 to 206 cm for the males. The radii of the fin rays and growth bands on the cross sections were measured under a dissecting microscope equipped with an image analysis system. Trends in the monthly marginal increment ratio indicated that growth bands formed once a year. Thus, the age of each fish was deter-mined from the number of visible growth bands. Two methods were used to estimate and compare the standard and the generalized von Bertalanffy growth parameters for both males and females. The nonlinear least square estimates of the generalized von Bertalanffy growth parameters in method II, in which a power function was used to describe the relationship between ray radius and LJFL, were recommended as most acceptable. There were significant differences in growth parameters between males and females. The growth parameters estimated for females were the following: asymptotic length (L∞) = 300.66 cm, growth coefficient (K) = 0.040/yr, age at zero length (t0) = –0.75 yr, and the fitted fourth parameter (m) = –0.785. The growth parameters estimated for males were the following: asymptotic length (L∞) = 213.05 cm, growth coefficient (K) = 0.086/yr, age at zero length (t0) = –0.626 yr, and the fitted fourth parameter (m) = –0.768.
Resumo:
After 1975 a large inventory work of fisheries resources began in Mozambican waters. The tuna stocks, for instance, were virtually unexplored. After 10 years roughly, the oceanographic investigations led to the temporary localization of the most favorable areas for longline fishing or surface gears.