955 resultados para Homo [3 2] dipolar cycloaddition
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
p-Conjugated block copolymers have been prepared from terminal azide functionalized polystyrenes (PS) and alkyne functionalized poly(3- hexylthiophene)s (P3HT) via a copper(I) catalyzed Huisgen [3 + 2] dipolar cycloaddition reaction. The functionalized a-azido-PS homopolymer was prepared by atom transfer radical polymerization from a specifically designed initiator bearing the azide function, whereas ?-ethynyl-P3HT and a,?-pentynyl-P3HT were synthesized by a modified Grignard metathesis polymerization using alkynyl Grignard derivatives. The electronic environment of the alkynyl end groups was shown to be decisive in determining triazole ring formation.
Resumo:
This thesis outlines the synthetic chemistry involved in the preparation of a range of novel indazole compounds and details the subsequent investigation into their potential as biologically active agents. The synthetic route utilised in this research to form the indazole structure was the [3+2] dipolar cycloaddition of diazo carbonyl compounds with reactive aryne intermediates generated in situ. The preparation of further novel indazole derivatives containing different functional groups and substituents was performed by synthesising alternative 1,3- dipole and dipolarophile analogues and provided additionally diverse compounds. Further derivatisation of the indazole product was made possible by deacylation and alkylation methods. Transformation reactions were performed on alkenecontaining ester side chains to provide novel epoxide, aldehyde and tertiary amine derivatives. The first chapter is a review of the literature beginning with a short overview on the structure, reactivity and common synthetic routes to diazo carbonyl derivatives. More attention is given to the use of diazo compounds as 1,3-dipoles in cycloaddition reactions or where the diazo group is incorporated into the final product. A review of the interesting background, structure and reactivity of aryne intermediates is also presented. In addition, some common syntheses of indazole compounds are presented as well as a brief discussion on the importance of indazole compounds as therapeutic agents. The second chapter discusses the synthetic routes employed towards the synthesis of the range of indazoles. Initially, the syntheses of the diazo carbonyl and aryne precursors are described. Next, the synthetic methods to prepare the indazole compounds are provided followed by discussion on derivatisation of the indazole compounds including N-deacylation, N-benzylation and ester side-chain transformation of some alkene-containing indazoles. A series of novel indazole derivatives were submitted for anti-cancer screening at the U.S National Cancer Institute (NCI). A number of these derivatives were identified as hit compounds, with excellent growth inhibition. The results obtained from biological evaluation from the NCI are provided with further results pending from the Community for Open Antimicrobial Drug Discovery. The third chapter details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.
Resumo:
Four liquid crystals (LC) 3,7a-bis(4-alkyloxyphenyl)-7,7a-dihydro-6H-isoxazolo[2,3-d][1,2,4]oxadiazol-6-yl)acetic acid (7a-d) were synthesised and the mesomorphic behaviour reported. The LCs were characterised as 2: 1 bisadducts, which were obtained from a double [3+2] 1,3-dipolar cycloaddition. In the first step, the cycloaddition of 4-alkyloxyphenylnitrile oxide (4a-d) and vinylacetic acid (5) gave the initial unobserved 1:1 cycloadducts 2-[3-(4-alkyloxyphenyl)-4,5-dihydroisoxazol-5-yl]acetic acid (6a-d). In the second step, the addition of a second equivalent of 4 to 6 yielded the 2: 1 bisadducts 7a-d without any traces of 6. All compounds 7a-d were unstable during the transition from the mesophase to the isotropic state upon first heating as evidenced by the large peaks in the differential scanning calorimetry traces. Due to the chemical instability of the compounds upon heating, the transition temperature related to the smectic C to smectic A transitions was acquired by means of an image processing method. X-Ray diffraction experiments were also used to analyse the liquid-crystalline phases. A theoretical calculation was performed using density functional theory (DFT) methods at the PBE1PBE/6-311+G(2d,p) level (with solvent effect) in order to get information about the energetic profile of the 2: 1 cycloaddition. DFT studies revealed that the cycloaddition process is controlled by the HOMO(dipolarophile) - LUMO(1,3-dipole), and that the double [3+2] 1,3-dipolar cycloaddition reaction is quite possible.
Resumo:
The compound [Pd(bzan)(mu -N-3)](2) 1, bzan = benzylideneaniline, was prepared from [Pd(bzan) (mu -OOCCH3)](2) by an anion exchange reaction. The 1,3-dipolar cycloaddition of carbon disulfide to the bridged coordinated azide in the cyclometallated compound I was investigated. The species resulting from this reaction, di(mu -N,S-1,2,3,4-thiatriazol-5-thiolate)bis[(benzylideneaniline)palladium(II)] 2, was characterized by IR spectroscopy and X-ray diffraction. The compound 2 is a dimer containing two [Pd(benzylideneaniline)] moieties connected by two vicinal bridging N,S-1,2,3,4-thiatriazole-5-thiolate anions in a square-planar coordination geometry for the palladium atoms.
Resumo:
Chiral complexes formed by phosphoramidites such as (Sa,R,R)-9 and Cu(OTf)2 are excellent catalysts for the general 1,3-dipolar cycloaddition between azomethine ylides and nitroalkenes affording the corresponding tetrasubstituted proline esters mainly as exo-cycloadducts in high er at room temperature. The exo-cycloadducts can be obtained in enantiomerically pure form just after simple recrystallization. DFT calculations support the stereochemical results.
Resumo:
The silver-catalysed multicomponent reaction between ethyl glyoxylate, 2,2-dimethoxyacetaldehyde, or phenylglyoxal as aldehyde components with a α-amino ester hydrochloride and a dipolarophile in the presence of triethylamine is described. This domino process takes place at room temperature by in situ liberation of the α-amino ester followed by the formation of the imino ester, which is the precursor of a metalloazomethine ylide. The cycloaddition of this species and the corresponding dipolarophile affords polysubstituted proline derivatives. Ethyl glyoxylate reacts with glycinate, alaninate, phenylalaninate and phenylglycinate at room temperature in the presence of representative dipolarophiles affording endo-2,5-cis-cycloadducts in good yields and high diastereoselection. In addition, 2,2-dimethoxyacetaldehyde is evaluated with the same amino esters and dipolarophiles, under the same mild conditions, generating the corresponding endo-2,5-cis-cycloadducts with higher diastereoselections than the obtained in the same reactions using ethyl glyoxylate. In the case of phenylglyoxal the corresponding 5-benzoyl-endo-2,5-cis cycloadducts are obtained in short reaction times and similar diasteroselection.
Resumo:
1,3-Dipolar cycloaddition of diazomethane to the alpha,beta-unsaturated esters and lactones such as 2-4, 6-8, 10 and 13 occurs in a stereoselective manner affording conjugated Delta(2)-pyrazolines. E and Z isomers of D-mannitol lead to identical product which was cyclised to investigate the absolute stereochemistry of the product. The regiospecificities of all the reactions are consistent with FMO coefficients obtained through AM1 calculations.
Resumo:
A novel series of nitrofuran containing spiropyrrolidines has been synthesized with high regioselectivity in moderate to excellent yields via 1,3-dipolar cycloaddition reaction of azomethine ylides with various substituted chalcones.
Resumo:
he 1,3-dipolar cycloaddition between glycine-derived azlactones with maleimides is efficiently catalyzed by the dimeric chiral complex [(S-a)-Binap.AuTFA](2). The alanine-derived oxazolone only reacts with tert-butyl acrylate giving anomalous regiochemistry, which is explained and supported by Natural Resonance Theory and Nucleus Independent Chemical Shifts calculations. The origin of the high enantiodiscrimination observed with maleimides and tert-butyl acrylate is analyzed using DFT computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF) level. Several applications of these cycloadducts in the synthesis of new proline derivatives with a 2,5-trans-arrangement and in the preparation of complex fused polycyclic molecules are described.
Resumo:
Metallo-azomethine ylides, generated from imines by the action of amine bases in combination with LiBr or AgOAc, undergo cycloaddition with both 1R, 2S, 5R- and 1S, 2R, 5S-menthyl acrylate at room temperature to give homochiral pyrrolidines in excellent yield. The stronger the base the faster the cycloaddition and the greater the yield with: 2-t-butyl-1,1,3,3-tetramethylguanidine > DBU > NEt(3) X-Ray crystal structures of representative cycloadducts establish that the absolute configuration of the newly established pyrrolidine stereocentres is independent of the metal salt and the size of the pyrrolidineC(2)-substituent for a series of aryl and aliphatic imines.
Resumo:
The thesis entitled novel 1,3-dipolar cycloaddition reactions of acyclic carbonyl ylides and related chemistry embodies the results of the investigations carried out to explore the reactivity of acyclic carbonyl ylides,generated by the reaction of dicarbomethoxy carbine and aldehydes towards dipolarophiles such as activated styrenes,1,2-and 1,4-quinones. In conclusion ,we have explored the reactivity pattern of acyclic carbonyl ylides derived from dicarbomethoxycarbene and aldehyde towards activated styrenes with a view to develop a stereoselective synthesis of highly substituted tetrahydrofuran derivatives. It was also found that the ylide could be trapped by various 1,2-and 1,4-diones to form dioxolane derivatives. It is noteworthy that the cycloaddition is highly region- and stereoselective. With isatins the ylide preferentially adds to the more electrone deficient carbonyl group making it regiospecific. Hetrocyclic compounds are of pivotal importance in organic chemistry, and enormous efforts have been devoted to develop new methodologies for their synthesis. It is noteworthy in this context that, 1,3-dipolar cycloaddition reaction,otherwise called Huisgen reaction, constitutes one of the most efficient methods for the synthesis of five membered heterocycles. Among the various dipoles, carbonyl ylides have received substiancial attention in recent years largely due to their utility in the synthesis of a wide range of oxygen hetrocycles, which are often found as structural subunits of many bioactive natural products.
Resumo:
The 1,3-dipolar cycloaddition of carbon disulfide to the coordinated azide in the cyclometallated compound [Pd(dmba)(N-3)](2) (1), dmba = N,N-dimethylbenzylamine, was investigated. The compound obtained di(mu, N,S-1,2,3,4-thiatriazole-5-thiolate)-bis[(N,N-dimethylbenzylamine-C-2,N)palladium(II)] (2), was characterized by IR spectroscopy and X-ray diffraction. Complex (2) is dimeric with the two [Pd(N,N-dimethylbenzylamine)] moieties being connected by the two vicinal bridging N,S-1,2,3,4-thiatriazole-5-thiolate anions in a square-planar coordination for the palladium atoms.
Resumo:
Kinetics of 1,3-dipolar cycloaddition involving azomethine ylides, generated from thermal [1,2]-prototropy of the corresponding imino ester, employing differential scanning calorimetry (DSC), is surveyed. Glycine and phenylalanine derived imino esters have different behavior. The first one prefers reacting with itself at 75 ºC, rather than with the dipolarophile. However, the α-substituted imino ester gives the cycloadduct at higher temperatures. The thermal dynamic analysis by 1H NMR of the neat reaction mixture of the glycine derivative reveals the presence of signals corresponding to the dipole in very small proportion. The non-isothermal and isothermal DSC curves of the cycloaddition of phenylalaninate and diisobutyl fumarate are obtained from freshly prepared samples. The application of known kinetic models and mathematical multiple non-linear regressions (NLR) allow to determine and to compare Ea, lnA, reaction orders, and reaction enthalpy. Finally a rate equation for each different temperature can be established for this particular thermal cycloaddition.
Resumo:
Binap-AgSbF6 catalyzed 1,3-dipolar cycloadditions between azomethine ylides and electrophilic alkenes are described and compared with analogous transformations mediated by other Binap-silver(I) salt complexes. Maleimides and 1,2-bis(phenylsulfonyl)ethylene are suitable dipolarophiles for obtaining very good enantioselectivities, even better values are generated by a multicomponent version. There are some very interesting applications of the disulfonylated cycloadducts in the total synthesis of cis-2,5-disubstituted pyrrolidines, precursors of natural products, or valuable intermediates in the synthesis of antiviral compounds.