900 resultados para Homeodomain proteins
Resumo:
Homeodomain proteins are transcription factors that play a critical role in early development in eukaryotes. These proteins previously have been classified into numerous subgroups whose phylogenetic relationships are unclear. Our phylogenetic analysis of representative eukaryotic sequences suggests that there are two major groups of homeodomain proteins, each containing sequences from angiosperms, metazoa, and fungi. This result, based on parsimony and neighbor-joining analyses of primary amino acid sequences, was supported by two additional features of the proteins. The two protein groups are distinguished by an insertion/deletion in the homeodomain, between helices I and II. In addition, an amphipathic alpha-helical secondary structure in the region N terminal of the homeodomain is shared by angiosperm and metazoan sequences in one group. These results support the hypothesis that there was at least one duplication of homeobox genes before the origin of angiosperms, fungi, and metazoa. This duplication, in turn, suggests that these proteins had diverse functions early in the evolution of eukaryotes. The shared secondary structure in angiosperm and metazoan sequences points to an ancient conserved functional domain.
Resumo:
In previous experiments, the homeodomain proteins even-skipped and fushi-tarazu were found to UV cross-link to a surprisingly wide array of DNA sites in living Drosophila embryos. We now show that UV cross-linking gives a highly accurate measure of DNA binding by these proteins. In addition, the binding of even-skipped and fushi-tarazu proteins has been measured in vitro to the same DNA fragments that were examined in vivo. This analysis shows that these proteins have broad DNA recognition properties in vitro that are likely to be important determinants of their distribution on DNA in vivo, but it also shows that in vitro DNA binding specificity alone is not sufficient to explain the distribution of these proteins in embryos.
Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins
Resumo:
The mechanisms by which cells obtain instructions to precisely re-create the missing parts of an organ remain an unresolved question in regenerative biology. Urodele limb regeneration is a powerful model in which to study these mechanisms. Following limb amputation, blastema cells interpret the proximal-most positional identity in the stump to reproduce missing parts faithfully. Classical experiments showed the ability of retinoic acid (RA) to proximalize blastema positional values. Meis homeobox genes are involved in RA-dependent specification of proximal cell identity during limb development. To understand the molecular basis for specifying proximal positional identities during regeneration, we isolated the axolotl Meis homeobox family. Axolotl Meis genes are RA-regulated during both regeneration and embryonic limb development. During limb regeneration, Meis overexpression relocates distal blastema cells to more proximal locations, whereas Meis knockdown inhibits RA proximalization of limb blastemas. Meis genes are thus crucial targets of RA proximalizing activity on blastema cells.
Resumo:
The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and beta-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins.
Resumo:
The panneural protein Prospero is required for proper differentiation of neuronal lineages and proper expression of several genes in the nervous system of Drosophila. Prospero is an evolutionarily conserved, homeodomain-related protein with dual subcellular localization. Here we show that Prospero is a sequence-specific DNA-binding protein with novel sequence preferences that can act as a transcription factor. In this role, Prospero can interact with homeodomain proteins to differentially modulate their DNA-binding properties. The relevance of functional interactions between Prospero and homeodomain proteins is supported by the observation that Prospero, together with the homeodomain protein Deformed, is required for proper regulation of a Deformed-dependent neural-specific transcriptional enhancer. We have localized the DNA-binding and homeodomain protein-interacting activities of Prospero to its highly conserved C-terminal region, and we have shown that the two regulatory capacities are independent.
Resumo:
The A mating type genes of the mushroom Coprinus cinereus encode two families of dissimilar homeodomain proteins (HD1 and HD2). The proteins heterodimerize when mating cells fuse to generate a transcriptional regulator that promotes expression of genes required for early steps in sexual development. In previous work we showed that heterodimerization brings together different functional domains of the HD1 and HD2 proteins; a potential activation domain at the C terminus of the HD1 protein and an essential HD2 DNA-binding motif. Two predicted nuclear localization signals (NLS) are present in the HD1 protein but none are in the HD2 protein. We deleted each NLS separately from an HD1 protein and showed that one (NLS1) is essential for normal heterodimer function. Fusion of the NLS sequences to the C terminus of an HD2 protein compensated for their deletion from the HD1 protein partner and permitted the two modified proteins to form a functional transcriptional regulator. The nuclear targeting properties of the A protein NLS sequences were demonstrated by fusing the region that encodes them to the bacterial uidA (β-glucuronidase) gene and showing that β-glucuronidase expression localized to the nuclei of onion epidermal cells. These observations lead to the proposal that heterodimerization regulates entry of the active transcription factor complex to the nucleus.
Resumo:
The Homeodomain Resource is an annotated collection of non-redundant protein sequences, three-dimensional structures and genomic information for the homeodomain protein family. Release 3.0 contains 795 full-length homeodomain-containing sequences, 32 experimentally-derived structures and 143 homeobox loci implicated in human genetic disorders. Entries are fully hyperlinked to facilitate easy retrieval of the original records from source databases. A simple search engine with a graphical user interface is provided to query the component databases and assemble customized data sets. A new feature for this release is the addition of DNA recognition sites for all human homeodomain proteins described in the literature. The Homeodomain Resource is freely available through the World Wide Web at http://genome.nhgri.nih.gov/homeodomain.
Resumo:
LIM domain-containing transcription factors, including the LIM-only rhombotins and LIM-homeodomain proteins, are crucial for cell fate determination of erythroid and neuronal lineages. The zinc-binding LIM domains mediate protein-protein interactions, and interactions between nuclear LIM proteins and transcription factors with restricted expression patterns have been demonstrated. We have isolated a novel protein, nuclear LIM interactor (NLI), that specifically associates with a single LIM domain in all nuclear LIM proteins tested. NLI is expressed in the nuclei of diverse neuronal cell types and is coexpressed with a target interactor islet-1 (Isl1) during the initial stages of motor neuron differentiation, suggesting the mutual involvement of these proteins in the differentiation process. The broad range of interactions between NLI and LIM-containing transcription factors suggests the utilization of a common mechanism to impart unique cell fate instructions.
Resumo:
During development of the vertebrate nervous system, the neural cell adhesion molecule (N-CAM) is expressed in a defined spatiotemporal pattern. We have proposed that the expression of N-CAM is controlled, in part, by proteins encoded by homeobox genes. This hypothesis has been supported by previous in vitro experiments showing that products of homeobox genes can both bind to and transactivate the N-CAM promoter via two homeodomain binding sites, HBS-I and HBS-II. We have now tested the hypothesis that the N-CAM gene is a target of homeodomain proteins in vivo by using transgenic mice containing native and mutated N-CAM promoter constructs linked to a beta-galactosidase reporter gene. Segments of the 5' flanking region of the mouse N-CAM gene were sufficient to direct expression of the reporter gene in the central nervous system in a pattern consistent with that of the endogenous N-CAM gene. For example, at embryonic day (E) 11, beta-galactosidase staining was found in postmitotic neurons in dorsolateral and ventrolateral regions of the spinal cord; at E14.5, staining was seen in these neurons throughout the spinal cord. In contrast, mice carrying an N-CAM promoter-reporter construct with mutations in both homeodomain binding sites (HBS-I and HBS-II) showed altered expression patterns in the spinal cord. At E11, beta-galactosidase expression was seen in the ventrolateral spinal cord, but was absent in the dorsolateral areas, and at E 14.5, beta-galactosidase expression was no longer detected in any cells of the cord. Homeodomain binding sites found in the N-CAM promoter thus appear to be important in determining specific expression patterns of N-CAM along the dorsoventral axis in the developing spinal cord. These experiments suggest that the N-CAM gene is an in vivo target of homeobox gene products in vertebrates.
Resumo:
PBX1 is a homeobox-containing gene identified as the chromosome 1 participant of the t(1;19) chromosomal translocation of childhood pre-B-cell acute lymphoblastic leukemia. This translocation produces a fusion gene encoding the chimeric oncoprotein E2A-Pbx1, which can induce both acute myeloid and T-lymphoid leukemia in mice. The binding of Pbx1 to DNA is weak; however, both Pbx1 and E2A-Pbx1 exhibit tight binding to specific DNA motifs in conjunction with certain other homeodomain proteins, and E2A-Pbx1 activates transcription through these motifs, whereas Pbx1 does not. In this report, we investigate potential transcriptional functions of Pbx1, using transient expression assays. While no segments of Pbx1 activated transcription, an internal domain of Pbx1 repressed transcription induced by the activation domain of Sp1, but not by the activation domains of VP16 or p53. This Pbx1 domain, which lies upstream of the homeodomain and is highly conserved among Pbx proteins, is thus predicted to bind a specific transcription factor. Surprisingly, the repression activity of Pbx1 did not require homeodomain-dependent DNA binding. Thus, Pbx1 may be able to alter gene transcription by both DNA-binding-dependent and DNA-binding-independent mechanisms.
Resumo:
The Hox gene products are DNA-binding proteins, containing a homeodomain, which function as a class of master control proteins establishing the body plan in organisms as diverse as Drosophila and vertebrates. Hox proteins have recently been shown to bind cooperatively to DNA with another class of homeodomain proteins that include extradenticle, Pbx1, and Pbx2. Hox gene products contain a highly conserved hexapeptide connected by a linker of variable length to the homeodomain. We show that the hexapeptide and the linker region are required for cooperativity with Pbx1 and Pbx2 proteins. Many of the conserved residues present in the Hoxb-8 hexapeptide are required to modulate the DNA binding of the Pbx proteins. Position of the hexapeptide relative to the homeodomain is important. Although deletions of two and four residues of the linker peptide still show cooperative DNA binding, removal of all six linker residues strongly reduces cooperativity. In addition, an insertion of 10 residues within the linker peptide significantly lowers cooperative DNA binding. These results show that the hexapeptide and the position of the hexapeptide relative to the homeodomain are important determinants to allow cooperative DNA binding involving Hox and Pbx gene products.
Resumo:
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies. © 2012 Nature America, Inc. All rights reserved.
Resumo:
Endometriosis is a common gynecological disease associated with pelvic pain and subfertility. We conducted a genome-wide association study (GWAS) in 3,194 individuals with surgically confirmed endometriosis (cases) and 7,060 controls from Australia and the UK. Polygenic predictive modeling showed significantly increased genetic loading among 1,364 cases with moderate to severe endometriosis. The strongest association signal was on 7p15.2 (rs12700667) for 'all' endometriosis (P = 2.6 x 10(-)(7), odds ratio (OR) = 1.22, 95% CI 1.13-1.32) and for moderate to severe disease (P = 1.5 x 10(-)(9), OR = 1.38, 95% CI 1.24-1.53). We replicated rs12700667 in an independent cohort from the United States of 2,392 self-reported, surgically confirmed endometriosis cases and 2,271 controls (P = 1.2 x 10(-)(3), OR = 1.17, 95% CI 1.06-1.28), resulting in a genome-wide significant P value of 1.4 x 10(-)(9) (OR = 1.20, 95% CI 1.13-1.27) for 'all' endometriosis in our combined datasets of 5,586 cases and 9,331 controls. rs12700667 is located in an intergenic region upstream of the plausible candidate genes NFE2L3 and HOXA10.
Resumo:
Endometriosis has a genetic component, and significant linkage has been found to a region on chromosome 10q. Two candidate genes, EMX2 and PTEN, implicated in both endometriosis and endometrial cancer, lie on chromosome 10q. We hypothesized that variation in EMX2 and/or PTEN could contribute to the risk of endometriosis and may account for some of the linkage signal on 10q. We genotyped single nucleotide polymorphisms (SNPs) in a case-control design to evaluate association between endometriosis and common variations in these two genes. The genotyping and statistical analysis were based on samples collected from Australian volunteers. The cases were 768 unrelated women with surgically confirmed endometriosis selected from affected sister pair (ASP) families participating in the Australian Genes behind Endometriosis Study. The controls were 768 female participants in twin studies who, based on screening questions, did not have a diagnosis of endometriosis. Genotypes of 22 SNPs in the EMX2 gene and 15 SNPs in the PTEN gene were the main outcome measures. Statistical analysis provided measures of linkage disequilibrium and association. Permutation testing showed no globally significant association between any SNPs or haplotypes and endometriosis for either gene. It is unlikely that the EMX2 or PTEN gene variants investigated contribute to risk for initiation and/or development of endometriosis.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF = 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.