971 resultados para Holder-type discrete functions


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we prove a weak Noether-type Theorem for a class of variational problems that admit broken extremals. We use this result to prove discrete Noether-type conservation laws for a conforming finite element discretisation of a model elliptic problem. In addition, we study how well the finite element scheme satisfies the continuous conservation laws arising from the application of Noether’s first theorem (1918). We summarise extensive numerical tests, illustrating the conservation of the discrete Noether law using the p-Laplacian as an example and derive a geometric-based adaptive algorithm where an appropriate Noether quantity is the goal functional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quaternionic theory has greatly been developed in recent years [1-12]. Thus, in our view, the study of trigonometric and logarithmic type quaternionic functions is important for the determination and realization of a hyper complex theory. In this paper, we intend to give a geometrical foundation for both logarithmic and trigonometric hyper complex functions based on the exponential function of quaternionic type recently introduced by Borges, Marão and Machado in their paper entitled Geometrical octonions II: Hyper regularity and hyper periodicity of the exponential function appearing. © 2011 Pushpa Publishing House.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is devoted to the study of the class of continuous and bounded functions f : [0, infinity] -> X for which exists omega > 0 such that lim(t ->infinity) (f (t + omega) - f (t)) = 0 (in the sequel called S-asymptotically omega-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically omega-periodic functions. We also study the existence of S-asymptotically omega-periodic mild solutions of the first-order abstract Cauchy problem in Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Protein degradation is an indispensable process for cells which is often deregulated in various diseases, including malignant conditions. Depending on the specific cell type and functions of expressed proteins, this aberration may have different effects on the determination of malignant phenotypes. A discrete, inherent feature of malignant glioma is its profound invasive and migratory potential, regulated by the expression of signaling and effector proteins, many of which are also subjected to post-translational regulation by the ubiquitin-proteasome system (UPS). Here we provide an overview of this connection, focusing on important pro-invasive protein signals targeted by the UPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt is made by the researcher to establish a theory of discrete functions in the complex plane. Classical analysis q-basic theory, monodiffric theory, preholomorphic theory and q-analytic theory have been utilised to develop concepts like differentiation, integration and special functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study generalised prime systems P (1 < p(1) <= p(2) <= ..., with p(j) is an element of R tending to infinity) and the associated Beurling zeta function zeta p(s) = Pi(infinity)(j=1)(1 - p(j)(-s))(-1). Under appropriate assumptions, we establish various analytic properties of zeta p(s), including its analytic continuation, and we characterise the existence of a suitable generalised functional equation. In particular, we examine the relationship between a counterpart of the Prime Number Theorem (with error term) and the properties of the analytic continuation of zeta p(s). Further we study 'well-behaved' g-prime systems, namely, systems for which both the prime and integer counting function are asymptotically well-behaved. Finally, we show that there exists a natural correspondence between generalised prime systems and suitable orders on N-2. Some of the above results are relevant to the second author's theory of 'fractal membranes', whose spectral partition functions are given by Beurling-type zeta functions, as well as to joint work of that author and R. Nest on zeta functions attached to quasicrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The question "what Monte Carlo models can do and cannot do efficiently" is discussed for some functional spaces that define the regularity of the input data. Data classes important for practical computations are considered: classes of functions with bounded derivatives and Holder type conditions, as well as Korobov-like spaces. Theoretical performance analysis of some algorithms with unimprovable rate of convergence is given. Estimates of computational complexity of two classes of algorithms - deterministic and randomized for both problems - numerical multidimensional integration and calculation of linear functionals of the solution of a class of integral equations are presented. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multithickness sea ice model explicitly accounting for the ridging and sliding friction contributions to sea ice stress is developed. Both ridging and sliding contributions depend on the deformation type through functions adopted from the Ukita and Moritz kinematic model of floe interaction. In contrast to most previous work, the ice strength of a uniform ice sheet of constant ice thickness is taken to be proportional to the ice thickness raised to the 3/2 power, as is revealed in discrete element simulations by Hopkins. The new multithickness sea ice model for sea ice stress has been implemented into the Los Alamos “CICE” sea ice model code and is shown to improve agreement between model predictions and observed spatial distribution of sea ice thickness in the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ultra Weak Variational Formulation (UWVF) is a powerful numerical method for the approximation of acoustic, elastic and electromagnetic waves in the time-harmonic regime. The use of Trefftz-type basis functions incorporates the known wave-like behaviour of the solution in the discrete space, allowing large reductions in the required number of degrees of freedom for a given accuracy, when compared to standard finite element methods. However, the UWVF is not well disposed to the accurate approximation of singular sources in the interior of the computational domain. We propose an adjustment to the UWVF for seismic imaging applications, which we call the Source Extraction UWVF. Differing fields are solved for in subdomains around the source, and matched on the inter-domain boundaries. Numerical results are presented for a domain of constant wavenumber and for a domain of varying sound speed in a model used for seismic imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages of including a small number of p-type gaussian functions in a floating spherical gaussian orbital calculation are pointed out and illustrated by calculations on molecules which previously have proved to be troublesome. These include molecules such as F2 with multiple lone pairs and C2H2 with multiple bonds. A feature of the results is the excellent correlation between the orbital energies and those of a double zeta calculation reported by Snyder and Basch.