890 resultados para Hierarchical Linear Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavioral researchers commonly use single subject designs to evaluate the effects of a given treatment. Several different methods of data analysis are used, each with their own set of methodological strengths and limitations. Visual inspection is commonly used as a method of analyzing data which assesses the variability, level, and trend both within and between conditions (Cooper, Heron, & Heward, 2007). In an attempt to quantify treatment outcomes, researchers developed two methods for analysing data called Percentage of Non-overlapping Data Points (PND) and Percentage of Data Points Exceeding the Median (PEM). The purpose of the present study is to compare and contrast the use of Hierarchical Linear Modelling (HLM), PND and PEM in single subject research. The present study used 39 behaviours, across 17 participants to compare treatment outcomes of a group cognitive behavioural therapy program, using PND, PEM, and HLM on three response classes of Obsessive Compulsive Behaviour in children with Autism Spectrum Disorder. Findings suggest that PEM and HLM complement each other and both add invaluable information to the overall treatment results. Future research should consider using both PEM and HLM when analysing single subject designs, specifically grouped data with variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a novel dual-stage algorithm for online multi-target tracking in realistic conditions. In the first stage, the problem of data association between tracklets and detections, given partial occlusion, is addressed using a novel occlusion robust appearance similarity method. This is used to robustly link tracklets with detections without requiring explicit knowledge of the occluded regions. In the second stage, tracklets are linked using a novel method of constraining the linking process that removes the need for ad-hoc tracklet linking rules. In this method, links between tracklets are permitted based on their agreement with optical flow evidence. Tests of this new tracking system have been performed using several public datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Occupational driving crashes are the most common cause of death and injury in the workplace. The physical and psychological outcomes following injury are also very costly to organizations. Thus, safe driving poses a managerial challenge. Some research has attempted to address this issue through modifying discrete and often simple target behaviors (e.g., driver training programs). However, current intervention approaches in the occupational driving field generally do not consider the role of organizational factors in workplace safety. This study adopts the A-B-C framework to identify the contingencies associated with an effective exchange of safety information within the occupational driving context. Utilizing a sample of occupational drivers and their supervisors, this multi-level study examines the contingencies associated with the exchange of safety information within the supervisor-driver relationship. Safety values are identified as an antecedent of the safety information exchange, and the quality of the leader-member exchange relationship and safe driving performance is identified as the behavioral consequences. We also examine the function of role overload as a factor influencing the relationship between safety values and the safety information exchange. Hierarchical Linear Modelling found that role overload moderated the relationship between supervisors’ perceptions of the value given to safety and the safety information exchange. A significant relationship was also found between the safety information exchange and the subsequent quality of the leader-member exchange relationship. Finally, the quality of the leader-member exchange relationship was found to be significantly associated with safe driving performance. Theoretical and practical implications of these results are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hong Kong subproject was supported by the Quality Education Fund of the Education Bureau in Hong Kong, whereas the Portuguese subproject was supported by the Portuguese Foundation for Science and Technology and by the Institute of Education of the University of Lisbon. The data of this paper were part of the data collected in a multinational project initiated by the International School Psychology Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many depressed patients report intrusive and distressing memories of specific events in their lives. Where present, these memories are believed to act as a maintaining factor. A series of ten patients with major depressive disorder and intrusive memories, many of them reporting severe, chronic, or recurrent episodes of depression, were given an average of 8.1 sessions of imagery rescripting as a stand-alone treatment. Hierarchical linear modelling demonstrated large treatment effects that were well maintained at one year follow-up. Seven patients showed reliable improvement, and six patients clinically significant improvement. These gains were achieved entirely by working through patients' visual imagination and without verbal challenging of negative beliefs. Spontaneous changes in beliefs, rumination, and behaviour were nevertheless observed. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The offspring of depressed parents have been found to show elevated basal levels of the stress hormone cortisol. Whether heightened cortisol stress reactivity is also present in this group has yet to be clearly demonstrated. We tested whether postnatal maternal depression predicts subsequent increases in offspring biological sensitivity to social stress, as indexed by elevated cortisol reactivity. Participants (mean age 22.4-years) derived from a 22-year prospective longitudinal study of the offspring of mothers who had postnatal depression (PND group; n=38) and a control group (n=38). Salivary cortisol response to a social-evaluative threat (Trier Social Stress Test) was measured. Hierarchical linear modelling indicated that PND group offspring showed greater cortisol reactivity to the stress test than control group participants. Group differences were not explained by offspring depressive or anxiety symptoms, experiences of negative life events, elevated basal cortisol at age 13-years, subsequent exposure to maternal depression, or other key covariates. The findings indicate that the presence of early maternal depression can predict offspring biological sensitivity to social stress in adulthood, with potential implications for broader functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the assumption that persistent performance in an exhausting indoor cycling task would depend on momentarily available self-control strength (N = 20 active participants). In a within-subjects design (two points of measurement, exactly seven days apart), participants’ self-control strength was experimentally manipulated (depletion: yes vs. no; order counterbalanced) via the Stroop test before the participants performed a cycling task. In line with our hypothesis, hierarchical linear modelling (HLM) revealed that participants consistently performed worse over a period of 18 minutes when they were ego depleted. In addition, HLM analysis revealed that depleted participants invested less effort in the cycling task, as indicated by their lower heart rate. This effect escalated over time, as indicated by a time × condition interaction. These results indicate that self-control strength is necessary to obtain an optimal level of performance in endurance tasks requiring high levels of persistence. Practical implications are discussed.