1000 resultados para Hexenuronic acid
Resumo:
Kraft pulp is currently bleached largely by the elemental chlorine free (ECF) technology with oxygen, chlorine dioxide, and hydrogen as active agents. This technology brought about significant environmental improvements in relation to standard processes based on chlorine gas and hypochlorite, but there is still need for further improvements. This study presents a novel environmentally friendly bleaching stage - the so-called `hydrogen peroxide in supercritical carbon dioxide`, P((SC-CO2)) - that can be adapted to current ECF bleaching processes, with preference in cases where hydrogen peroxide is already used. In this study, the P((SC-CO2)) stage was evaluated as a replacement to the last peroxide stage of the D(EP)DP bleaching sequence and to the first peroxide stage of the D(EP)DP sequence, for an oxygen delignified eucalypt kraft-O(2) pulp. The P((SC-CO2)) stage was run with 0.5% hydrogen peroxide, at 15% consistency, 70 degrees C, and 73 bar. The reaction time was 30 min. The performances of regular P stages and the new P((SC-CO2)) stage were compared. Promising results were observed with the DEP((SC-CO2))DP sequence; the P((SC-CO2)) decreased kappa number from 2.7 to 2.1, and the hexenuronic acid groups from 17.0 to 12.4 mmol kg(-1). The P((SC-CO2)) stage showed poor performance when applied in the D(EP)DP((SC-CO2)) sequence. It is concluded that the process presents potential but requires further optimization to improve selectivity and efficiency.
Resumo:
This study investigated the impact of pulp hexenuronic acids (HexAs) content on pulping yield by changing cooking reaction temperature. The bleachability of pulps containing variable amounts of HexAs was also investigated. The cooking at 170 degrees C produced pulp of kappa number, HexAs and screen yield of 16.2, 49.4 mmol/kg and 50.2%, respectively, whereas the cooking at 156 degrees C resulted pulp of kappa 17.0, 61.3 mmol/kg HexAs and 50.8% screened yield. The pulp produced at lower cooking temperature also showed better bleachability as evaluated by the total amount of active chlorine required to achieve 90% ISO. The sequence OAHTD(EP) DD showed the lowest bleaching performance among all.
Efeito dos ácidos hexenurônicos e da lignina no desempenho da ozonólize, em diferentes pHs da reação
Resumo:
The effect of pH on the performance of the ozonolysis stage in pulp production was evaluated for conventional and acid treated brown and oxygen delignified eucalyptus kraft pulps. The objective was to determine separately the effects of lignin and hexenuronic acid on the performance of the ozonolysis stage. The reaction of ozone with hexenuronic acid is less sensitive to pH than the reaction of ozone with lignin. The efficiency and the selectivity of the reaction of ozone with pulp decreases after removal of hexenuronic acids. Increasing up to 7.0 the pH during the ozonolysis is viable in the sequence Z/D(EOP)D, resulting in savings of H2SO4 (8,5 kg/tsa) and NaOH (5 kg/tsa), but is not recommended in the sequence Z/ED(PO).
Resumo:
This study aimed at determining the effect of kappa number, lignin and hexenuronic acid contents on oxygen stage performance. Industrial brown pulps produced by the ITC and KobudoMARI cooking technologies, of kappa number and HexA's contents varying in the range of 10-21.7 and 23.2-56.7 mmol/kg, respectively, were collected in a period of 6 months and delignified with oxygen under fixed conditions. Kappa number was fractionated into lignin and hexenuronic acid and each fraction correlated with oxygen stage performance. It was concluded that O-stage efficiency, selectivity and yield does not correlate significantly with kappa number, lignin or hexenuronic acid contents for the ITC and KobudoMARI pulps at 5% of significance.
Resumo:
This study investigated the impact of pulp hexenuronic acids (HexAs) content on pulping yield by changing cooking reaction temperature. The bleachability of pulps containing variable amounts of HexAs was also investigated. The cooking at 170 degrees C produced pulp of kappa number, HexAs and screen yield of 16.2, 49.4 mmol/kg and 50.2%, respectively, whereas the cooking at 156 degrees C resulted pulp of kappa 17.0, 61.3 mmol/kg HexAs and 50.8% screened yield. The pulp produced at lower cooking temperature also showed better bleachability as evaluated by the total amount of active chlorine required to achieve 90% ISO. The sequence OAHTD(EP) DD showed the lowest bleaching performance among all.
Resumo:
Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.