997 resultados para Heuristic function
Resumo:
The preferences of users are important in route search and planning. For example, when a user plans a trip within a city, their preferences can be expressed as keywords shopping mall, restaurant, and museum, with weights 0.5, 0.4, and 0.1, respectively. The resulting route should best satisfy their weighted preferences. In this paper, we take into account the weighted user preferences in route search, and present a keyword coverage problem, which finds an optimal route from a source location to a target location such that the keyword coverage is optimized and that the budget score satisfies a specified constraint. We prove that this problem is NP-hard. To solve this complex problem, we pro- pose an optimal route search based on an A* variant for which we have defined an admissible heuristic function. The experiments conducted on real-world datasets demonstrate both the efficiency and accu- racy of our proposed algorithms.
Resumo:
Genetic algorithm has been widely used in different areas of optimization problems. Ithas been combined with renewable energy domain, photovoltaic system, in this thesis.To participate and win the solar boat race, a control program is needed and C++ hasbeen chosen for programming. To implement the program, the mathematic model hasbeen built. Besides, the approaches to calculate the boundaries related to conditionhave been explained. Afterward, the processing of the prediction and real time controlfunction are offered. The program has been simulated and the results proved thatgenetic algorithm is helpful to get the good results but it does not improve the resultstoo much since the particularity of the solar driven boat project such as the limitationof energy production
Resumo:
La tesi indaga l’esperienza del teatro comunitario, una delle espressioni artistiche più originali e pressoché sconosciute nel panorama teatrale novecentesco, che ha avuto in Argentina un punto di riferimento fondamentale. Questo fenomeno, che oggi conta cinquanta compagnie dal nord al sud del paese latinoamericano, e qualcuna in Europa, affonda le sue radici nella Buenos Aires della post-dittatura, in una società che continua a risentire degli esiti del terrore di Stato. Il teatro comunitario nasce dalla necessità di un gruppo di persone di un determinato quartiere di riunirsi in comunità e comunicare attraverso il teatro, con l'obiettivo di costruire un significato sociale e politico. La prima questione messa a fuoco riguarda la definizione della categoria di studio: quali sono i criteri che consentono di identificare, all’interno della molteplicità di pratiche teatrali collettive, qualcosa di sicuramente riconducibile a questo fenomeno. Nel corso dell’indagine si è rivelata fondamentale la comprensione dei conflitti dell’esperienza reale e l’individuazione dei caratteri comuni, al fine di procedere a un esercizio di generalizzazione. La ricerca ha imposto la necessità di comprendere i meccanismi mnemonici e identitari che hanno determinato e, a loro volta, sono stati riattivati dalla nascita di questa esperienza. L’analisi, supportata da studi filosofici e antropologici, è volta a comprendere come sia cambiata la percezione della corporeità in un contesto di sparizione dei corpi, dove il lavoro sulla memoria riguarda in particolare i corpi assenti (desaparecidos). L’originalità del tema ha imposto la riflessione su un approccio metodologico in grado di esercitare una adeguata funzione euristica, e di fungere da modello per studi futuri. Sono stati pertanto scavalcati i confini degli studi teatrologici, con particolare attenzione alle svolte culturali e storiche che hanno preceduto e affiancato l’evoluzione del fenomeno.
Resumo:
A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.
Resumo:
An intensive use of dispersed energy resources is expected for future power systems, including distributed generation, especially based on renewable sources, and electric vehicles. The system operation methods and tool must be adapted to the increased complexity, especially the optimal resource scheduling problem. Therefore, the use of metaheuristics is required to obtain good solutions in a reasonable amount of time. This paper proposes two new heuristics, called naive electric vehicles charge and discharge allocation and generation tournament based on cost, developed to obtain an initial solution to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach and presenting a very small error concerning the objective function with a low execution time for the scenario with 2000 vehicles.
Resumo:
Inferences consistent with “recognition-based” decision-making may be drawn for various reasons other than recognition alone. We demonstrate that, for 2-alternative forced-choice decision tasks, less-is-more effects (reduced performance with additional learning) are not restricted to recognition-based inference but can also be seen in circumstances where inference is knowledge-based but item knowledge is limited. One reason why such effects may not be observed more widely is the dependence of the effect on specific values for the validity of recognition and knowledge cues. We show that both recognition and knowledge validity may vary as a function of the number of items recognized. The implications of these findings for the special nature of recognition information, and for the investigation of recognition-based inference, are discussed
Resumo:
“Fast & frugal” heuristics represent an appealing way of implementing bounded rationality and decision-making under pressure. The recognition heuristic is the simplest and most fundamental of these heuristics. Simulation and experimental studies have shown that this ignorance-driven heuristic inference can prove superior to knowledge based inference (Borges, Goldstein, Ortman & Gigerenzer, 1999; Goldstein & Gigerenzer, 2002) and have shown how the heuristic could develop from ACT-R’s forgetting function (Schooler & Hertwig, 2005). Mathematical analyses also demonstrate that, under certain conditions, a “less-is-more effect” will always occur (Goldstein & Gigerenzer, 2002). The further analyses presented in this paper show, however, that these conditions may constitute a special case and that the less-is-more effect in decision-making is subject to the moderating influence of the number of options to be considered and the framing of the question.
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region.
Resumo:
Solutions to combinatorial optimization problems frequently rely on heuristics to minimize an objective function. The optimum is sought iteratively and pre-setting the number of iterations dominates in operations research applications, which implies that the quality of the solution cannot be ascertained. Deterministic bounds offer a mean of ascertaining the quality, but such bounds are available for only a limited number of heuristics and the length of the interval may be difficult to control in an application. A small, almost dormant, branch of the literature suggests using statistical principles to derive statistical bounds for the optimum. We discuss alternative approaches to derive statistical bounds. We also assess their performance by testing them on 40 test p-median problems on facility location, taken from Beasley’s OR-library, for which the optimum is known. We consider three popular heuristics for solving such location problems; simulated annealing, vertex substitution, and Lagrangian relaxation where only the last offers deterministic bounds. Moreover, we illustrate statistical bounds in the location of 71 regional delivery points of the Swedish Post. We find statistical bounds reliable and much more efficient than deterministic bounds provided that the heuristic solutions are sampled close to the optimum. Statistical bounds are also found computationally affordable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heuristic optimization algorithms are of great importance for reaching solutions to various real world problems. These algorithms have a wide range of applications such as cost reduction, artificial intelligence, and medicine. By the term cost, one could imply that that cost is associated with, for instance, the value of a function of several independent variables. Often, when dealing with engineering problems, we want to minimize the value of a function in order to achieve an optimum, or to maximize another parameter which increases with a decrease in the cost (the value of this function). The heuristic cost reduction algorithms work by finding the optimum values of the independent variables for which the value of the function (the “cost”) is the minimum. There is an abundance of heuristic cost reduction algorithms to choose from. We will start with a discussion of various optimization algorithms such as Memetic algorithms, force-directed placement, and evolution-based algorithms. Following this initial discussion, we will take up the working of three algorithms and implement the same in MATLAB. The focus of this report is to provide detailed information on the working of three different heuristic optimization algorithms, and conclude with a comparative study on the performance of these algorithms when implemented in MATLAB. In this report, the three algorithms we will take in to consideration will be the non-adaptive simulated annealing algorithm, the adaptive simulated annealing algorithm, and random restart hill climbing algorithm. The algorithms are heuristic in nature, that is, the solution these achieve may not be the best of all the solutions but provide a means to reach a quick solution that may be a reasonably good solution without taking an indefinite time to implement.
Resumo:
There is general agreement within the scientific community in considering Biology as the science with more potential to develop in the XXI century. This is due to several reasons, but probably the most important one is the state of development of the rest of experimental and technological sciences. In this context, there are a very rich variety of mathematical tools, physical techniques and computer resources that permit to do biological experiments that were unbelievable only a few years ago. Biology is nowadays taking advantage of all these newly developed technologies, which are been applied to life sciences opening new research fields and helping to give new insights in many biological problems. Consequently, biologists have improved a lot their knowledge in many key areas as human function and human diseases. However there is one human organ that is still barely understood compared with the rest: The human brain. The understanding of the human brain is one of the main challenges of the XXI century. In this regard, it is considered a strategic research field for the European Union and the USA. Thus, there is a big interest in applying new experimental techniques for the study of brain function. Magnetoencephalography (MEG) is one of these novel techniques that are currently applied for mapping the brain activity1. This technique has important advantages compared to the metabolic-based brain imagining techniques like Functional Magneto Resonance Imaging2 (fMRI). The main advantage is that MEG has a higher time resolution than fMRI. Another benefit of MEG is that it is a patient friendly clinical technique. The measure is performed with a wireless set up and the patient is not exposed to any radiation. Although MEG is widely applied in clinical studies, there are still open issues regarding data analysis. The present work deals with the solution of the inverse problem in MEG, which is the most controversial and uncertain part of the analysis process3. This question is addressed using several variations of a new solving algorithm based in a heuristic method. The performance of those methods is analyzed by applying them to several test cases with known solutions and comparing those solutions with the ones provided by our methods.
Resumo:
Recent evidence emerging from several laboratories, integrated with new data obtained by searching the genome databases, suggests that the area code hypothesis provides a good heuristic model for explaining the remarkable specificity of cell migration and tissue assembly that occurs throughout embryogenesis. The area code hypothesis proposes that cells assemble organisms, including their brains and nervous systems, with the aid of a molecular-addressing code that functions much like the country, area, regional, and local portions of the telephone dialing system. The complexity of the information required to code cells for the construction of entire organisms is so enormous that we assume that the code must make combinatorial use of members of large multigene families. Such a system would reuse the same receptors as molecular digits in various regions of the embryo, thus greatly reducing the total number of genes required. We present the hypothesis that members of the very large families of olfactory receptors and vomeronasal receptors fulfill the criteria proposed for area code molecules and could serve as the last digits in such a code. We discuss our evidence indicating that receptors of these families are expressed in many parts of developing embryos and suggest that they play a key functional role in cell recognition and targeting not only in the olfactory system but also throughout the brain and numerous other organs as they are assembled.
Resumo:
An original heuristic algorithm of sequential two-block decomposition of partial Boolean functions is researched. The key combinatorial task is considered: finding of suitable partition on the set of arguments, i. e. such one, on which the function is separable. The search for suitable partition is essentially accelerated by preliminary detection of its traces. Within the framework of the experimental system the efficiency of the algorithm is evaluated, the boundaries of its practical application are determined.