1000 resultados para Heisenberg model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SWAP operation in a two-qubit Heisenberg model in the presence of Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction is investigated. 1t is shown that the SWAP operation can be implemented for some kinds of DM coupling and the influence of DM couplings is divided into different cases. The conditions of the DM coupling under which the SWAP operation is feasible are established. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spin-1 model on a triangular lattice in the presence of a uniaxial anisotropy field using a cluster mean-field (CMF) approach. The interplay among antiferromagnetic exchange, lattice geometry, and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF method yields two supersolid phases compatible with those present in the spin-1/2 XXZ model onto which the spin-1 system maps. Between these two supersolid phases, the three-sublattice order is broken and the results of the CMF approach depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ground-state energies for anti ferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A rare example of a two-dimensional Heisenberg model with an exact dimerized ground state is presented. This model, which can be regarded as a variation on the kagome' lattice, has several features of interest: it has a highly (but not macroscopically) degenerate ground state; it is closely related to spin chains studied by earlier authors; in particular, it exhibits domain-wall-like "kink" excitations normally associated only with one-dimensional systems. In some limits it decouples into noninteracting chains; unusually, this happens in the limit of strong, rather than weak, interchain coupling. [S0163-1829(99)50338-X].

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered ionic potential Delta and the on-site Hubbard U. We find that for a finite Delta and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U = U-AF via a first-order phase transition. For U smaller than U-AF the system is a correlated band insulator. Both methods show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost via a first-order phase transition at a transition temperature T-AF(U,Delta) or, equivalently, on decreasing U below U-AF(T,Delta)], within both methods, for weak to intermediate values of U/t. In the strongly correlated regime, where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T, DMFT + CTQMC shows a second phase transition (not seen within DMFT + IPT) on increasing U beyond U-AF. At U-N > U-AF, when the Neel temperature T-N for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second-order transition. For U >> Delta, T-N similar to t(2)/U(1 - x(2)), where x = 2 Delta/U and thus T-N increases with increase in Delta/U. In the three-dimensional parameter space of (U/t, T/t, and Delta/t), as T increases, the surface of first-order transition at U-AF(T,Delta) and that of the second-order transition at U-N(T,Delta) approach each other, shrinking the range over which the AFM order is stable. There is a line of tricritical points that separates the surfaces of first- and second-order phase transitions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-(1)/(2) triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas, at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [Phys. Rev. B74, 180403(R) (2006)]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is only applicable at temperatures < 0.1J. Finally, we review recent NMR measurements on the organic compound kappa-(BEDT-TTF)(2)Cu-2(CN)(3). We argue that these are inconsistent with long-range order and a description of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only nearest-neighbor exchange does not offer an adequate description of this material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hydrothermal reaction of a mixture of ZnCl2, V2O5, ethylenediamine and water gave rise to a layered poly oxovanadate material. clusters. These clusters, with all the vanadium ions in the +4 state, are connected together through Zn(NH2(CH2)(2)NH2)(2) linkers forming a two-dimensional structure. The layers are also separated by distorted trigonal bipyramidal [Zn-2(NH2(CH2)(2)NH2)(5)] complexes. The Structure, thus, presents a dual role for the Zn-ethylenediamine complex. The magnetic susceptibility studies indicate that the interactions between the V centres in I are predominantly antiferromagnetic in nature and the compound shows highly frustrated behaviour. The magnetic properties are compared to the theoretical calculations based oil the Heisenberg model, in addition to correlating to the structure. Crystal data for the complexes are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study Raman scattering from 1D antiferromagnets within the Fleury-Loudon scheme by applying a finite temperature Lanczos method to a 1D spin-half Heisenberg model with nearest-neighbor (J(1)) and second-neighbor (J(2)) interactions. The low-temperature spectra are analyzed in terms of the known elementary excitations of the system for J(2) = 0 and J(2) = 1/2. We find that the low-T Raman spectra are very broad for \J(2)/J(1)\ less than or equal to 0.3. This broad peak gradually diminishes and shifts with temperature, so that at T > J(1) the spectra are narrower and peaked at low frequencies. The experimental spectra for CuGeO3 are discussed in light of our calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

65 p.