928 resultados para Harmful dinoflagellate blooms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal and spatial variability in the kinetic parameters of uptake of nitrate (NO3-), ammonium (NH4+), urea, and glycine was measured during dinoflagellate blooms in Changjiang River estuary and East China Sea coast, 2005. Karenia mikimotoi was the dominant species in the early stage of the blooms and was succeeded by Prorocentrum donghaiense. The uptake of nitrogen (N) was determined using N-15 tracer techniques. The results of comparison kinetic parameters with ambient nutrients confirmed that different N forms were preferentially taken up during different stages of the bloom. NO3- (V-max 0.044 h(-1); K-s 60.8 mu M-N) was an important N source before it was depleted. NH4+ (V-max 0.049 h(-1); K-s 2.15 mu M-N) was generally the preferred N. Between the 2 organic N sources, urea was more preferred when K. mikimotoi dominated the bloom (V-max 0.020 h(-1); K-s 1.35 mu M-N) and glycine, considered as a dominant amino acid, was more preferred when P. donghaiense dominated the bloom (V-max 0.025 h(-1); K-s 1.76 mu M-N). The change of N uptake preference by the bloom-forming algae was also related to the variation in ambient N concentrations. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During late spring and early summer of 2005, large-scale (> 15 000 km(2)), mixed dinoflagellate blooms developed along the the coast of the East China Sea. Karenia mikimotoi was the dominant harmful algal bloom species in the first stage of the bloom (late May) and was succeeded by Prorocentrum donghaiense approximately 2 wk later. Samples were collected from different stations along both north-south and west-east transects, from the Changjiang River estuary to the south Zhejiang coast, during 3 cruises of the Chinese Ecology and Oceanography of Harmful Algal Blooms Program, before and during the bloom progression. Nitrogen isotope tracer techniques were used to measure rates of NO3-, NH4+, urea, and glycine uptake during the blooms. High inorganic nitrogen (N), but low phosphorus (P) loading from the Changjiang River led to high dissolved inorganic N:dissolved inorganic P ratios in the sampling area and indicate the development of P limitation. The rates of N-15-uptake experiments enriched with PO43- were enhanced compared to unamended samples, suggesting P limitation of the N-uptake rates. The bloom progression was related to the change in availability of both organic and inorganic N and P. Reduced N forms, especially NH4+, were preferentially taken up during the blooms, but different bloom species had different rates of uptake of organic N substrates. K mikimotoi had higher rates of urea uptake, while P. donghaiense had higher rates of glycine uptake. Changes in the availability of reduced N and the ratios of N:P in inorganic and organic forms were suggested to be important in the bloom succession. Nutrient ratios and specific uptake rates of urea were similar when compared to analogous blooms on the West Florida Shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades, some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations such as the NAO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades. some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations Such as the NAO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series of physico-chemical data and concentrations (cell L-1) of the toxic dinoflagellate Alexandrium minutum collected in the Rance macrotidal estuary (Brittany, France) were analyzed to understand the physico-chemical processes of the estuary and their relation to changes in bloom development from 1996 to 2009. The construction of the tidal power plant in the north and the presence of a lock in the south have greatly altered hydrodynamics, blocking the zone of maximum turbidity upstream, in the narrowest part of the estuary. Alexandrium minutum occurs in the middle part of the estuary. Most physical and chemical parameters of the Rance estuary are similar to those observed elsewhere in Brittany with water temperatures between 15–18 °C, slightly lowered salinities (31.8–33.1 PSU), low river flow rates upstream and significant solar radiation (8 h day-1). A notable exception is phosphate input from the drainage basin which seems to limit bloom development: in recent years, bloom decline can be significantly correlated with the decrease in phosphate input. On the other hand, the chemical processes occurring in the freshwater-saltwater interface do not seem to have an influence on these occurrences. The other hypotheses for bloom declines are discussed, including the prevalence of parasitism, but remain to be verified in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are truly global marine phenomena of increasing significance. Some HAB occurrences are different to observe because of their high spatial and temporal variability and their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea during autumn 1998, causing the largest fisheries economic loss. The present study analyzes the formation, distribution, and advection of HAB using satellite SeaWiFS ocean color data and other oceanographic data. The results show that the bloom originated in the western coastal waters of the Bohai Sea in early September, and developed southeastward when sea surface temperature (SST) increased to 25-26 °C. The bloom with a high Chl-a concentration (6.5 mg m-3) in center portion covered an area of 60 × 65 km2. At the end of September, the bloom decayed when SST decreased to 22-23 °C. The HAB may have been initiated by a combination of the river discharge nutrients in the west coastal waters and the increase of SST; afterwards it may have been transported eastward by the local circulation that was enhanced by northwesterly winds in late September and early October.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foreword Background and objectives [pdf, 0.84 MB] Country reviews and status reports Section I. Western North Pacific Japan Yasuwo Fukuyo, Ichiro Imai, Masaaki Kodama and Kyoichi Tamai Red tides and harmful algal blooms in Japan [pdf, 0.7 MB] People's Republic of China Tian Yan, Ming-Jiang Zhou and Jing-Zhong Zou A national report of HABs in China [pdf, 0.24 MB] Republic of Korea Sam Geun Lee, Hak Gyoon Kim, Eon Seob Cho and Chang Kyu Lee Harmful algal blooms (red tides): Management and mitigation in Korea [pdf, 0.27 MB] Russia Tatiana Y. Orlova, Galina V. Konovalova, Inna V. Stonik, Tatiana V. Morozova and Olga G. Shevchenko Harmful algal blooms on the eastern coast of Russia [pdf, 1.4 MB] Section II. Eastern North Pacific Canada F.J.R. "Max" Taylor and Paul J. Harrison Harmful marine algal blooms in western Canada [pdf, 0.87 MB] United States of America Vera L. Trainer Harmful algal blooms on the U.S. west coast [pdf, 0.5 MB] Mexico Jose L. Ochoa, S. Lluch-Cota, B.O. Arredondo-Vega, E. Nuñes-Vázquez, A. Heredia-Tapia, J. Pérez-Linares and R. Alonso-Rodriguez Marine Biotoxins and harmful algal blooms in Mexico's Pacific littora [pdf, 0.2 MB] Summary and conclusions [pdf, 0.6 MB] Appendices A. Members of the Working Group [pdf, 0.1 MB] B. Original terms of reference (Vladivostok, 1999) [pdf, 0.08 MB] C. Annual reports of WG 15 [pdf, 0.15 MB] D. Workshop report on taxonomy and identification of HAB species and data management [pdf, 0.15 MB] (Document pdf contains 156 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is the product of a panel of experts in the science of blooms of unicellular marine algae which can cause mass mortalities in a variety of marine organisms and cause illness and even death in humans who consume contaminated seafood. These phenomena are collectively termed harmful algal blooms or HABs for short. As a counterpart to recent assessments of the priorities for scientific research to understand the causes and behavior of HABs, this assessment addressed the management options for reducing their incidence and extent (prevention), actions that can quell or contain blooms (control), and steps to reduce the losses of resources or economic values and minimize human health risks (mitigation). This assessment is limited to an appraisal of scientific understanding, but also reflects consideration of information and perspectives provided by regional experts, agency managers and user constituencies during three regional meetings. The panel convened these meetings during the latter half of 1996 to solicit information and opinions from scientific experts, agency managers and user constituencies in Texas, Washington, and Florida. The panel's assessment limited its attention to those HABs that result in neurotoxic shellfish poisoning, paralytic shellfish poisoning, brown tides, amnesic shellfish poisoning, and aquaculture fish kills. This covers most, but certainly not all, HAB problems in the U.S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are a significant and potentially expanding problem around the world. Resource management and public health protection require sufficient information to reduce the impacts of HABs by response strategies and through warnings and advisories. To be effective, these programs can best be served by an integration of improved detection methods with both evolving monitoring systems and new communications capabilities. Data sets are typically collected from a variety of sources, these can be considered as several types: point data, such as water samples; transects, such as from shipboard continuous sampling; and synoptic, such as from satellite imagery. Generation of a field of the HAB distribution requires all of these sampling approaches. This means that the data sets need to be interpreted and analyzed with each other to create the field or distribution of the HAB. The HAB field is also a necessary input into models that forecast blooms. Several systems have developed strategies that demonstrate these approaches. These range from data sets collected at key sites, such as swimming beaches, to automated collection systems, to integration of interpreted satellite data. Improved data collection, particularly in speed and cost, will be one of the advances of the next few years. Methods to improve creation of the HAB field from the variety of data types will be necessary for routine nowcasting and forecasting of HABs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algae are the most abundant photosynthetic organisms in marine ecosystems and are essential components of marine food webs. Harmful algal bloom or “HAB” species are a small subset of algal species that negatively impact humans or the environment. HABs can pose health hazards for humans or animals through the production of toxins or bioactive compounds. They also can cause deterioration of water quality through the buildup of high biomass, which degrades aesthetic, ecological, and recreational values. Humans and animals can be exposed to marine algal toxins through their food, the water in which they swim, or sea spray. Symptoms from toxin exposure range from neurological impairment to gastrointestinal upset to respiratory irritation, in some cases resulting in severe illness and even death. HABs can also result in lost revenue for coastal economies dependent on seafood harvest or tourism, disruption of subsistence activities, loss of community identity tied to coastal resource use, and disruption of social and cultural practices. Although economic impact assessments to date have been limited in scope, it has been estimated that the economic effects of marine HABs in U.S. communities amount to at least $82 million per year including lost income for fisheries, lost recreational opportunities, decreased business in tourism industries, public health costs of illness, and expenses for monitoring and management. As reviewed in the report, Harmful Algal Research and Response: A Human Dimensions Strategy1, the sociocultural impacts of HABs may be significant, but remain mostly undocumented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2004, Congress reauthorized the Harmful Algal Bloom and Hypoxia Research and Control Act of 1998 with the Harmful Algal Bloom and Hypoxia Amendments Act (HABHRCA 2004). The 2004 legislation required the generation of five reports, including this "Scientific Assessment of Freshwater Harmful Algal Blooms." HABHRCA 2004 stipulates that this report 1) examine the causes, consequences, and economic costs of freshwater HABs, 2) establish priorities and guidelines for a research program on freshwater HABs, and 3) make recommendations to improve coordination among Federal agencies with respect to research on HABs in freshwater environments. This report is divided into five chapters: Chapter 1 provides the legislative background and process for developing the report, Chapter 2 describes the problem of freshwater and inland HABs in the United States, Chapter 3 outlines the current Federal efforts in freshwater and inland HAB research and response, Chapter 4 discusses the future research priorities, and Chapter 5 delineates opportunities for coordination to advance research efforts. The document is based, in large part, on the proceedings (Hudnell 2008) of the International Symposium on Cyanobacterial Harmful Algal Blooms, a meeting convened by EPA and sponsored by a variety of Federal agencies, to describe current scientific knowledge and identify priorities for future research on CyanoHABs. This report offers a plan for coordinating the important research that is currently ongoing in the United States and for guiding future research directions for Federal programs as well as for state, local, private, and academic institutions in order to maximize advancements. To this end, the Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health (IWG-4H) identifies seven priorities, all of equal weight, for freshwater HAB research and response. These priorities represent research areas where there is the greatest potential for progress in freshwater HAB research. This report does not attempt to assess the relative importance of freshwater HAB research compared to other research areas or other priorities for Federal or state investment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screening experiments were conducted in order to find promising synthetic surfactants for harmful algal blooms (HABs) mitigation. The chemically synthesized surfactant cocamidopropyl betaine (CAPB) showed characteristics of relatively high inhibition efficiency, high biodegradability and low cost. The motility inhibition ratios of 10 mg/L CAPB on Cochlodinium polykrikoides and Alexandrium tamarense were about 60% after 5 min. The biodegradation test indicated that the half-life of CAPB in seawater was shorter than one day and 90% was biodegraded after five days under the initial concentration of 100 mg/L at 25degreesC. Further cell lysis experiments revealed the selective lysis effect of CAPB on different HAB organisms. More than 90% of C. polykrikoides lysed at the concentration of 10 mg/L CAPB after 24 h and at 15 mg/L CAPB after 4 h, whereas the lysis effect of CAPB on A. tamarense was slight, no more than 10% after 2 h interaction with 50 mg/L CAPB. This research provided preliminary data for CAPB as a candidate in harmful algal blooms mitigation and pointed out unresolved problems for its practical application in the meantime. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibition effect of sophorolipid and removal efficiency of loess on Cochlodinium polykrikoides and Alexandrium tamarense was investigated separately in the laboratory. Based on this, the combination of sophorolipid and loess for harmful algal bloom mitigation was proposed. Algal sedimentation tests in the laboratory and in the field revealed that the combination of sophorolipid and loess showed synergistic effects both on the removal efficiencies and on the mitigation cost. The concentration of 1 g/l loess and 5 mg/l sophorolipid was determined as the optimum ratio for C polykrikoides mitigation. In the field test, the effective concentration of loess and sophorolipid in the combination group was reduced to 10% and 25%, respectively, compared to the non-combination group, and the cost decreased more than 60%. The combination of loess and sophorolipid was considered as a promising novel method in harmful algal bloom mitigation. (C) 2003 Elsevier Ltd. All rights reserved.