978 resultados para HOLLOW SPHERES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2-based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodic mesoporous organosilica (PMO) hollow spheres with tunable wall thickness have been successfully synthesized by a new vesicle and a liquid crystal “dual templating” mechanism, which may be applicable for drug and DNA delivery systems, biomolecular encapsulation, as well as nanoreactors for conducting biological reactions at the molecular levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uniform hydrangea-like multi-scale carbon hollow submicron spheres (HCSSg) are fabricated by a simple hydrothermal method using glucose as carbon source and fibrous silicon dioxides spheres as shape guide. Structure characterization suggests that petal-like partially graphitized carbon nanosheets with the thickness of about 10 nm arranged in three dimensions (3D) to form the hydrangea-like hollow spheres (size ranging from 250 to 500 nm) with mesoporous channels, which can be conducive to be a high specific surface area (934 m2 g-1) and bulk density (0.87 cm g-3), hierarchical pores structure with good conductivity. As a result, the HCSSg has been demonstrated to be a supercapacitor electrode material with high gravimetric (386 F g-1 at 0.2 A g-1) and outstanding volumetric (335 F cm-3) capacitance, good rate capability and cycling stability with 94% capacitance retention after 5000 cycles in aqueous electrolytes, thus suggesting its application potential.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Well-shaped Y2O3:Eu hollow microspheres have been successfully prepared on a large scale via a urea-based homogeneous precipitation technique in the presence of colloidal carbon spheres as hard templates followed by a subsequent heat treatment process. XRD results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure cubic phase Of Y2O3. TEM and SEM images indicate that the shell of the uniform hollow spheres, whose diameters are about 250 nm, is composed of many uniform nanoparticles with diameters of about 20 nm, basically consistent with the estimation of XRD results. Furthermore, the main process in this method was carried out in aqueous condition, without the use of organic solvents or etching agents. The as-prepared hollow Y2O3:Eu microspheres show a strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under ultraviolet or low voltage excitation, which might find potential applications in fields such as light phosphor powders, advanced flat panel displays, field emission display devices, and biological labeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A high-efficiency and low-cost spongelike Au/Pt core/shell electrocatalyst with hollow cavity has been facilely obtained via a simple two-step wet chemical process. Hollow gold nanospheres were first synthesized via a modified galvanic replacement reaction between Co nanoparticles in situ produced and HAUCl(4). The as-prepared gold hollow spheres were employed as seeds to further grow spongelike Pt shell. It is found that the surface of this hybrid nanomaterial owns many Pt nanospikes, which form a spongelike nanostructure. All experimental data including scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis-near-infrared spectroscopy have been employed to characterize the obtained Au/Pt hybrid nanomaterial. The rapid development of fuel cell has inspired us to investigate the electrocatalytic properties for dioxygen and methanol of this novel hybrid nanomaterial. Spongelike hybrid nanomaterial mentioned here exhibits much higher catalytic activity for dioxygen reduction and methanol oxidation than the common Pt electrode.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spherical and submicrometer-sized hollow Gd2O3:Eu3+ phosphors were prepared by homogeneous precipitation and hydrothermal method by varying the concentrations of reactants and changing the synthesis conditions. In the precipitation step, the spherical nucleus was formed and grew to large particles. In the hydrothermal step, the large particles crystallized to solid or hollow spheres. At last, Gd2O3:Eu3+ phosphors were obtained by annealing at the temperature more than 600 degrees C. The deduced mechanics of forming the solid and hollow spheres was proposed. And the obtained spherical Gd2O3:Eu3+ phosphors had better red luminescence properties. The relative luminescence intensity and the lifetime increased with increasing annealing temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hollow sphere cellular aluminium (HSCA) samples were fabricated by bonding together two kinds of single aluminium hollow spheres with the same outside diameter of 4 mm but different wall thicknesses of 0.1 mm and 0.3 mm, in which the hollow spheres with the thinner sphere wall thickness were used as artificial defects. Four types of HSCA samples with the same relative density but various distributions of artificial defects were prepared by simple cubic packing. For comparing, HSCA sample without defective hollow spheres inside was also prepared. The effects of the distribution of the artificial defects on the deformation behaviours and mechanical properties were investigated by compressive tests. Results indicated that the nominal stress - nominal strain curve and the deformation behavior of the HSCA samples varied with the distribution of the artificial defects in spite of the same relative density. It is therefore suggested that the deformation behavior and mechanical property of cellular materials were also significantly affected by the distribution of defects. In particular, the plateau stress of the HSCA samples increased with the decrease in number of contact points between the normal hollow spheres and the defective hollow spheres in the loading direction during deformation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Manufactured cellular aluminums have been developed for a wide range of automotive applications where weight savings, improved safety, crashworthiness and comfort are required. The plateau deformation behavior of cellular aluminums under compressive loading makes this new class of lightweight materials suitable for energy absorption and comes close to ideal impact absorbers. In the present study, aluminum hollow hemispheres were firstly processed by pressing. Hollow sphere aluminum samples with a body-centered cubic (BCC) packing were then fabricated by bonding together single hollow spheres, which were prepared by adhering together hollow hemispheres. Hollow sphere aluminum samples with various kinds of sphere wall thicknesses of 0.1 mm, 0.3 mm and 0.5 mm but the same outside diameter of 4 mm were investigated by compressive tests. The effects of the sphere wall thickness on the mechanical properties and energy absorption characteristics were investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hollow sphere metallic foams are a new class of cellular material that possesses the attractive advantages of uniform cell size distribution and regular cell shape. These result in more predictable physical and mechanical properties than those of cellular materials with a random cell size distribution and irregular cell shapes. In the present study, single aluminum hollow spheres with three kinds of sphere wall thickness as 0.1 mm, 0.3 mm and 0.5 mm were processed by a new pressing method. Hollow sphere aluminum foam samples were prepared by bonding together single hollow spheres with simple cubic packing (SC) and body-centered cubic packing (BCC). Compressive tests were carried out to evaluate the deformation behaviors and mechanical properties of the hollow sphere aluminum foams. Effects of the sphere wall thickness and packing style on the mechanical properties were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ethylenediamine-assisted route has been designed for one-step synthesis of lithium niobate particles with a novel rodlike structure in an aqueous solution system. The morphological evolution for these lithium niobate rods was monitored via SEM: The raw materials form large lozenges first. These lozenges are a metastable intermediate of this reaction, and they subsequently crack into small rods after sufficiently long time. These small rods recrystallize and finally grow into individual lithium niobate rods. Interestingly, shape-controlled fabrication of lithium niobate powders was achieved through using different amine ligands. For instance, the ethylenediamine or ethanolamine ligan can induce the formation of rods, while n-butylamine prefers to construct hollow spheres. These as-obtained lithium niobate rods and hollow spheres may exhibit enhanced performance in an optical application field due to their distinctive structures. This effective ligand-tuned-morphology route can provide a new strategy to facilely achieve the shape-controlled synthesis of other niobates.