58 resultados para HF5356 .W6
Resumo:
by Mary Aronetta Wilbur.
Resumo:
Los óxidos mixtos con estructura tipo perovskita doble A2BBO6 presentan gran interés desde el punto de vista científico y tecnológico debido a la gran variedad de propiedades que poseen: superconductoras, catalíticas, magnéticas y magnetorresistentes, por ejemplo. La temperatura es un variable que permite modificar la simetría de la estructura cristalina y, consecuentemente, las propiedades físicas del material. El trabajo describe la síntesis, caracterización estructural y de las transiciones de fase en nuevos materiales de dos familias de perovskitas dobles: la familia de wolframio (Sr2M2+W6+O6) y la familia de antimonio (A2M3+Sb5+O6). Se ha llevado a cabo la síntesis de 29 compuestos, 22 de ellos sintetizados por primera vez. Los compuestos se han caracterizado mediante técnicas de difracción de rayos X y de neutrones, determinando su estructura cristalina a temperatura ambiente, así como las posibles transiciones de fase a bajas y altas temperaturas, y en algunos casos, también las estructuras de altas y bajas temperaturas. Los materiales de la familia de wolframio estudiados en este trabajo presentan un ordenamiento total entre los cationes M2+ y W6+ en los sitios B y B de la perovskita doble (A2BBO6); y presentan, además, una única secuencia de transiciones de fase a altas temperaturas: P21/n -> I4/m -> Fm3m. Las temperaturas de las transiciones de fase observadas en estos compuestos en función del factor de tolerancia (t), muestran una tendencia general de disminución según t se aproxima a 1. En esta familia, se observa, también, que el rango de existencia de la fase tetragonal intermedia es más amplio para valores de t mayores. Con respecto de la familia de antimonio, el ordenamiento catiónico en los sitios A y B, de una parte, y en los sitios B y B de otra, depende del tamaño de los cationes. Los compuestos de esta familia presentan una gran variedad de grupos espaciales a temperatura ambiente: P2_1 /n, I2/m, I4/m, R-3 y Fm-3m. Además, dependiendo de la diferencia entre los tamaños de los cationes M^3+ y Sb^5+ , los compuestos presentan dos secuencias de transiciones de fase en todo el rango de temperatura: P21/n->I2/m->I4/m->Fm-3m, la misma que en la familia del wolframio pero con una simetría intermedia monoclínica I2/m (compuestos con cationes M^3+ de tamaños similares al del Sb^5+ ); y P21/n -> R-3 -> Fm-3m, con una simetría intermedia trigonal en vez de tetragonal, como en la familia del wolframio (compuestos con cationes M3+ de tamaños mayores que el del Sb5+ ). En esta familia, las temperaturas de las transiciones de fase disminuyen conforme aumenta t.
Resumo:
The sintering behaviour and the microstructural evolution of W6+, Nb5+ and Ti4+iron-substituted BiFeO3 ceramics have been analyzed. The obtained results show that W6+ and Nb5+ ions interact with the secondary phases usually present in these materials, thus altering the solid state formation of the BiFeO3 phase. In contrast, Ti4+ ions incorporate into the perovskite structure, leading to an exceptionally low proportion of secondary phases. In addition to this, BiFe0.95Ti0.05O3 materials present a dense microstructure with submicronic and nanostructured grains, clearly smaller than those in the undoped materials.
Resumo:
Synthesis and structures of several new oxides containing bismuth are described. Three types of structures are common among the multinary oxides containing trivalent bismuth. They are the sillenite structure of γ-Bi2O3, the layered perovskite structure of Aurivillius phases and the pyrochlore structure. The influence of Bi3+∶6s 2 lone pair electrons is seen in all the three structures. In transition metal oxides containing trivalent bismuth,d o cations (Ti4+, Nb5+, W6+) stabilize the layered perovskite structure, while cations containing partially-filledd orbitals (V4+, Cr3+, Fe3+) favour pyrochlore-related structures. Ferroelectric distortion ofMO6 octahedra of thed o cations seems to play an important role in stabilizing layered perovskite structures.
Resumo:
Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.
Resumo:
W/Cr codoped Bi4Ti3O12 ceramics, Bi4Ti3-xWxO12+x+0.2 wt%Cr2O3 (BITWC, x=0-0.15), were prepared using a solid-state reaction method. The crystallographic evolution and phase analysis were distinctly determined focusing on the X-ray diffraction peak changes in (020)/(200) and (220)/(1115) diffraction planes, by which the lattice parameters, a, b, and c can be refined. The thermal variations of permittivity, dielectric loss (tan delta), impedance, and electrical conductivity properties were characterized. A decrease in the values of Curie temperature from 675 degrees to 640 degrees C and an increase in the values of the dielectric constant due to an increase of W6+/Cr3+ content were observed. The highest piezoelectric constant, d(33) of 22 pC/N, was achieved with the composition of Bi4Ti2.975W0.025O12.025+0.2 wt% Cr2O3. Also, this composition had a lower electrical conductivity than the other investigated compositions.
Resumo:
The d.c. conductivity of phosphomolybdate and phosphotungstate glasses is discussed. The conductivity of these glasses is due to the hopping of electrons between two valence states (Mo5+ to Mo6+ or W5+ W6+). In some of the glasses, the activation energy itself is found to be a function of temperature. This appears to be due to thermally activated and variable-range hopping mechanisms operating in different temperature regimes. The relation between conductivity and the [M5+]/[Mtotal](M ≡ Mo, W) ratio does not show any systematic variation. This anomaly can be understood using the structural models of these glasses. In contrast, Mott's theory and the Triberis and Friedman model have been used to obtain conductivity parameters such as the percolation distance Rij and 2agrRij (agr is the tunnelling probability). The conductivity parameter 2agrRij is quite useful to resolve the controversy regarding the tunnelling term exp(2agrRij) existing in the literature. For low values of 2agrRij, it is shown that the exp (2agrRij) term is very significant.
Resumo:
Electrodeposition of Co-W alloy coatings has been carried out with DC and PC using gluconate bath at different pH. These coatings are characterized for their structure, morphology and chemical composition by X-ray diffraction, field emission scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy (XPS). Alloy coatings plated at pH8 are crystalline, whereas coatings electrodeposited at pH5 are nanocrystalline in nature. XPS studies have demonstrated that as-deposited alloy plated at pH8 with DC contain only Co2+ and W6+ species, whereas that alloy plated at pH5 has significant amount of Co-0 and W-0 along with Co2+ and W6+ species. Again, Co2+ and W6+ are main species in all as-deposited PC plated alloys in both pH. Co-0 concentration increases upon successive sputtering of all alloy coatings. In contrast, mainly W6+ species is detected in the following layers of all alloys plated with PC. Alloys plated at pH5 show higher microhardness compared to their pH8 counterparts.
Resumo:
This dissertation primarily describes chemical-scale studies of G protein-coupled receptors and Cys-loop ligand-gated ion channels to better understand ligand binding interactions and the mechanism of channel activation using recently published crystal structures as a guide. These studies employ the use of unnatural amino acid mutagenesis and electrophysiology to measure subtle changes in receptor function.
In chapter 2, the role of a conserved aromatic microdomain predicted in the D3 dopamine receptor is probed in the closely related D2 and D4 dopamine receptors. This domain was found to act as a structural unit near the ligand binding site that is important for receptor function. The domain consists of several functionally important noncovalent interactions including hydrogen bond, aromatic-aromatic, and sulfur-π interactions that show strong couplings by mutant cycle analysis. We also assign an alternate interpretation for the linear fluorination plot observed at W6.48, a residue previously thought to participate in a cation-π interaction with dopamine.
Chapter 3 outlines attempts to incorporate chemically synthesized and in vitro acylated unnatural amino acids into mammalian cells. While our attempts were not successful, method optimizations and data for nonsense suppression with an in vivo acylated tRNA are included. This chapter is aimed to aid future researchers attempting unnatural amino acid mutagenesis in mammalian cells.
Chapter 4 identifies a cation-π interaction between glutamate and a tyrosine residue on loop C in the GluClβ receptor. Using the recently published crystal structure of the homologous GluClα receptor, other ligand-binding and protein-protein interactions are probed to determine the similarity between this invertebrate receptor and other more distantly related vertebrate Cys-loop receptors. We find that many of the interactions previously observed are conserved in the GluCl receptors, however care must be taken when extrapolating structural data.
Chapter 5 examines inherent properties of the GluClα receptor that are responsible for the observed glutamate insensitivity of the receptor. Chimera synthesis and mutagenesis reveal the C-terminal portion of the M4 helix and the C-terminus as contributing to formation of the decoupled state, where ligand binding is incapable of triggering channel gating. Receptor mutagenesis was unable to identify single residue mismatches or impaired protein-protein interactions within this domain. We conclude that M4 helix structure and/or membrane dynamics are likely the cause of ligand insensitivity in this receptor and that the M4 helix has an role important in the activation process.
Resumo:
The field emission properties of nanostructured carbon films deposited by cathodic vacuum arc in a He atmosphere have been studied by measuring the emission currents and the emission site density. The films have an onset field of ∼ 3 V/μm. The emission site density is viewed on a phosphor anode and it increases rapidly with applied field. It is assumed that the emission occurs from surface regions with a range of field enhancement factors but with a constant work function. The field enhancement factor is found to have an exponential distribution.
Resumo:
The purpose of this study, Evaluation the effect of Rosmarinus officinalis and Thymus vulgaris extracts on the stability of poly unsaturated fatty acids in frozen Silver carp minced. Treatments include: Treatment 1 - Control: frozen meat packaged in conventional Treatment 2: Frozen Silver carp minced+Thyme 300 mg/kg in normal packaging Treatment 3: Frozen Silver carp minced+Rosemary 200 mg/kg in normal packaging Treatment 4: Frozen Silver carp minced+Rosemary compound (100 mg/kg) and Thyme (100 mg/kg) in normal packaging After rapid freezing of samples in the spiral freezer by individual quick freezing method, to maintain the cold temperature (-18) °C were transferred. Sampling and measurements to determine the fatty acid profile of the zero phase beginning in the first month and then every ten days, and 15 days in the second month of the third month after the monthly test. Identifying, defining and measuring the fatty acid profile by gas chromatography was performed. In this study, levels of both saturated and unsaturated fatty acids in three experimental and one control were identified as follows: A: saturated fatty acids: Meristic C14: 0/Palmitic C16: 0/Hepta decaenoic C17: 0/Stearic C18: 0/Arashidic C20: 0/B:Mono unsaturated fatty acids: palmitoleic C16: 1-W7/Oleic C18: 1-W9/Gadoleic C20: 1-W9 C:Poly unsaturated fatty acids: Linoleic C18: 2-W6/α-Linolenic C18: 3-W3 D:High unsaturated fatty acids: Arachidonic C20: 4-W6 Eicosapentaenoic acid C20: 5-EPA/W3 Docosahexaenoic C22: 6-DHA/W3 Results of this study was to determine, Thyme and rosemary extracts containing silver carp minced stored in freezing conditions, Stability of different types of fatty acids, monounsaturated fatty acids, poly-unsaturated fatty acids, omega-3 and omega-6 fatty acids are. So that none of the fatty acids measured were not significant 100% increase or decrease, While changes in the fatty acid oxidation during storage time is minimized. The results obtained from the fatty acid profiles and indicators of their and statistical tests show that treatment with rosemary extract More stable during storage (-18) ° C In comparison with the control and other treatments are shown; And at relatively low compared to other treatments and control samples oleic acid and linoleic acid, palmitic more. According to studies,in Silver carp minced that containing rosemary extract, end of the storage period of six months. Were usable, so even rosemary extract the shelf-life examples to increase more than six months.