995 resultados para H9c2 cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H2O2-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H2O2 cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H2O2 cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways. (c) 2006 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulating evidence demonstrates that chronic inflammation plays an important role in heart hypertrophy and cardiac diseases. However, the fine-tuning of cellular and molecular mechanisms that connect inflammatory process and cardiac diseases is still under investigation. Many reports have demonstrated that the overexpression of the cyclooxygenase-2 (COX-2), a key enzyme in the conversion of arachidonic acid to prostaglandins and other prostanoids, is correlated with inflammatory processes. Increased level of prostaglandin E2 was also found in animal model of left ventricle of hypertrophy. Based on previous observations that demonstrated a regulatory loop between COX-2 and the RNA-binding protein CUGBP2, we studied cellular and molecular mechanisms of a pro-inflammatory stimulus in a cardiac cell to verify if the above two molecules could be correlated with the inflammatory process in the heart. A cellular model of investigation was established and H9c2 was used.We also demonstrated a regulatory connection between COX-2 and CUGBP2 in the cardiac cells. Based on a set of different assays including gene silencing and fluorescence microscopy, we describe a novel function for the RNA-binding protein CUGBP2 in controlling the pro-inflammatory stimulus: subcellular trafficking of messenger molecules to specific cytoplasmic stress granules to maintain homeostasis. © 2013 International Federation for Cell Biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction : La prévention de la mort de cellules cardiaques contractiles suite à un épisode d'infarctus du myocarde représente le plus grand défi dans la récupération de la fonction cardiaque. On a démontré à maintes reprises que l'ocytocine (OT), l'hormone bien connue pour ses rôles dans le comportement social et reproductif et couramment utilisée dans l’induction de l’accouchement, diminue la taille de l'infarctus et améliore la récupération fonctionnelle du myocarde blessé. Les mécanismes de cette protection ne sont pas totalement compris. Objectif : Étudier les effets d'un traitement avec de l'ocytocine sur des cardiomyocytes isolés en utilisant un modèle in vitro qui simule les conditions d'un infarctus du myocarde. Méthodes : La lignée cellulaire myoblastique H9c2 a été utilisée comme modèle de cardiomyocyte. Pour simuler le dommage d'ischémie-reperfusion (IR), les cellules ont été placées dans un tampon ischémique et incubées dans une chambre anoxique pendant 2 heures. La reperfusion a été accomplie par la restauration du milieu de culture régulier dans des conditions normales d'oxygène. L'OT a été administrée en présence ou en absence d'inhibiteurs de kinases connues pour être impliquées dans la cardioprotection. La mortalité cellulaire a été évaluée par TUNEL et l'activité mitochondriale par la production de formazan pendant 1 à 4 heures de reperfusion. La microscopie confocale a servie pour localiser les structures cellulaires. Résultats : Le modèle expérimental de l'IR dans les cellules H9c2 a été caractérisé par une diminution dans la production de formazan (aux alentours de 50 à 70 % du groupe témoin, p < 0.001) et par l'augmentation du nombre de noyaux TUNEL-positif (11.7 ± 4.5% contre 1.3 ± 0.7% pour le contrôle). L'addition de l'OT (10-7 a 10-9 M) au commencement de la reperfusion a inversé les effets de l'IR jusqu'aux niveaux du contrôle (p < 0.001). L'effet protecteur de l'OT a été abrogé par : i) un antagoniste de l'OT ; ii) le knockdown de l'expression du récepteur à l'OT induit par le siRNA ; iii) la wortmannin, l'inhibiteur de phosphatidylinositol 3-kinases ; iv) KT5823, l'inhibiteur de la protéine kinase dépendante du cGMP (PKG); v) l'ODQ, un inhibiteur du guanylate cyclase (GC) soluble, et A71915, un antagoniste du GC membranaire. L'analyse confocale des cellules traitées avec OT a révélé la translocation du récepteur à l'OT et la forme phosphorylée de l'Akt (Thr 308, p-Akt) dans le noyau et dans les mitochondries. Conclusions : L'OT protège directement la viabilité des cardiomyocytes, lorsqu'elle est administrée au début de la reperfusion, par le déclenchement de la signalisation du PI3K, la phosphorylation de l'Akt et son trafic cellulaire. La cytoprotection médiée par l'OT implique la production de cGMP par les deux formes de GC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, thus representing a potential therapeutic target. Apoptosis of cardiac cells can be induced experimentally by several stimuli including hypoxia, serum withdrawal or combination of both. Several lines of research suggest that neurohormonal mechanisms play a central role in the progression of heart failure. In particular, excessive activation of the sympathetic nervous system or the renin-angiotensin-aldosterone system is known to have deleterious effects on the heart. Recent studies report that norepinephrine (NE), the primary transmitter of sympathetic nervous system, and aldosterone (ALD), which is actively produced in failing human heart, are able to induce apoptosis of rat cardiomyocytes. Polyamines are biogenic amines involved in many cellular processes, including apoptosis. Actually it appears that these molecules can act as promoting, modulating or protective agents in apoptosis depending on apoptotic stimulus and cellular model. We have studied the involvement of polyamines in the apoptosis of cardiac cells induced in a model of simulated ischemia and following treatment with NE or ALD. Methods: H9c2 cardiomyoblasts were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation. Cardiomyocyte cultures were prepared from 1-3 day-old neonatal Wistar rat hearts. Polyamine depletion was obtained by culturing the cells in the presence of α-difluoromethylornithine (DFMO). Polyamines were separated and quantified in acidic cellular extracts by HPLC after derivatization with dansyl chloride. Caspase activity was measured by the cleavage of the fluorogenic peptide substrate. Ornithine decarboxylase (ODC) activity was measured by estimation of the release of 14C-CO2 from 14C-ornithine. DNA fragmentation was visualized by the method of terminal transferase-mediated dUTP nick end-labeling (TUNEL), and DNA laddering on agarose gel electophoresis. Cytochrome c was detected by immunoflorescent staining. Activation of signal transduction pathways was investigated by western blotting. Results: The results indicate that simulated ischemia, NE and ALD cause an early induction of the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, followed by a later increase of caspase activity, a family of proteases that execute the death program and induce cell death. This effect was prevented in the presence of DFMO, an irreversible inhibitor of ODC, thus suggesting that polyamines are involved in the execution of the death program activated by these stimuli. In H9c2 cells DFMO inhibits several molecular events related to apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, down-regulation of Bcl-xL, and DNA fragmentation. The anti-apoptotic protein survivin is down-regulated after ALD or NE treatement and polyamine depletion obtained by DFMO partially opposes survivin decrease. Moreover, a study of key signal transduction pathways governing cell death and survival, revealed an involvement of AMP activated protein kinase (AMPK) and AKT kinase, in the modulation by polyamines of the response of cardiomyocytes to NE. In fact polyamine depleted cells show an altered pattern of AMPK and AKT activation that may contrast apoptosis and appears to result from a differential effect on the specific phosphatases that dephosphorylate and switch off these signaling proteins. Conclusions: These results indicate that polyamines are involved in the execution of the death program activated in cardiac cells by heart failure-related stimuli, like ischemia, ALD and NE, and suggest that their apoptosis facilitating action is mediated by a network of specific phosphatases and kinases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exact mechanisms of the exercise induced adaptations is not lucid, but recent studies have delineated two means of signaling by which the adaptations occur (1) substrate availability signaling (metabolic stress) (2) hormone-receptor signaling. We have decided to specifically investigate two metabolic signaling enzymes [AMP-activated kinase (AMPK) and Sirtuin 1(SIRT1)] and two hormones [Adiponectin and Adrenergic stimulation].Tis based on four papers with the following conclusions: (1)Increase in SIRT1 activity and expression in H9c2 cells treated with phenylephrine is an adaptive response to the hypertrophic stress, mediated by AMPK. (2)The lack of optimal nutritional conditions (energetic substrates) due to a prolonged activation of AMPK can contrast the establishment of hypertrophy, possibly also by means of the negative modulation of ODC activity. (3) Our findings offer a possibile hypothesis as to the fact the the G allele on site 45 could lead to the increasd risk of Type II diabetes through a decrease in lean body mass. (4) Our results suggest that there is an ADIPOQ gene effect in relation to bone parameters. Statistical analysis show that the presence of the T allele in position 45 favors an increase in lumbar spine bone mineral content (BMC) when compared to subjects with a G allele substitution, which can be do the the increase in lean body mass in this genotype group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell adhesion to thrombospondin-1 (TSP-1) correlates with assembly of cell–substratum contact structures that contain fascin microspikes. In this analysis, cell-matrix requirements for assembly of fascin microspikes were examined in detail. In six cell lines, cell spreading on a TSP-1 substratum correlated with expression of fascin protein and formation of fascin microspikes. Microspikes were not formed by H9c2 cells adherent on fibronectin, vitronectin, collagen IV, or platelet factor 4. However, both fascin microspikes and focal contacts were assembled by cells adherent on laminin-1. Using mixed substrata containing different proportions of TSP-1, and fibronectin, fascin microspike formation by H9c2 and C2C12 cells was found to be reduced on substrata containing 25% fibronectin and abolished on substrata containing 75% fibronectin. Adhesion to intermediate mixtures of TSP-1 and fibronectin resulted in coassembly of fascin microspikes and focal contacts, colocalization of fascin with actin stress fiber bundles and altered distributions of β1 integrins, cortical α-actinin, and tropomyosin. In cells adherent on 50% TSP-1:50% fibronectin, GRGDSP peptide treatment decreased focal contact assembly and altered cytoskeletal organization but did not inhibit microspike assembly. Treatment with chondroitin sulfate A or p-nitrophenol β-d-xylopyranoside decreased microspike formation and modified cytoskeletal organization but did not inhibit focal contact formation. In polarized migratory and postmitotic C2C12 cells, fascin microspikes and ruffles were localized at leading edges and TSP matrix deposition was also concentrated in this region. Depletion of matrix TSP by heparin treatment correlated with decreased microspike formation and cell motility. Thus, the balance of adhesive receptors ligated at the cell surface during initial cell–matrix attachment serves to regulate the type of substratum adhesion contact assembled and subsequent cytoskeletal organization. A role for fascin microspikes in cell motile behavior is indicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoxia is a stress condition in which tissues are deprived of an adequate O2 supply; this may trigger cell death with pathological consequences in cardiovascular or neurodegenerative disease. Reperfusion is the restoration of an oxygenated blood supply to hypoxic tissue and can cause more cell injury. The kinetics and consequences of reactive oxygen and nitrogen species (ROS/RNS) production in cardiomyoblasts are poorly understood. The present study describes the systematic characterization of the kinetics of ROS/RNS production and their roles in cell survival and associated protection during hypoxia and hypoxia/reperfusion. H9C2 cells showed a significant loss of viability under 2% O2 for 30min hypoxia and cell death; associated with an increase in protein oxidation. After 4h, apoptosis induction under 2% O2 and 10% O2 was dependent on the production of mitochondrial superoxide (O2-•) and nitric oxide (•NO), partly from nitric oxide synthase (NOS). Both apoptotic and necrotic cell death during 2% O2 for 4h could be rescued by the mitochondrial complex I inhibitor; rotenone and NOS inhibitor; L-NAME. Both L-NAME and the NOX (NADPH oxidase) inhibitor; apocynin reduced apoptosis under 10% O2 for 4h hypoxia. The mitochondrial uncoupler; FCCP significantly reduced cell death via a O2-• dependent mechanism during 2% O2, 30min hypoxia. During hypoxia (2% O2, 4h)/ reperfusion (21% O2, 2h), metabolic activity was significantly reduced with increased production of O2-• and •NO, during hypoxia but, partially restored during reperfusion. O2-• generation during hypoxia/reperfusion was mitochondrial and NOX- dependent, whereas •NO generation depended on both NOS and non-enzymatic sources. Inhibition of NOS worsened metabolic activity during reperfusion, but did not effect this during sustained hypoxia. Nrf2 activation during 2% O2, a sustained hypoxia and reperfusion was O2-•/•NO dependent. Inhibition of NF-?B activation aggravated metabolic activity during 2% O2, 4h hypoxia. In conclusion, mitochondrial O2-•, but, not ATP depletion is the major cause of apoptotic and necrotic cell death in cardiomyoblasts under 2% O2, 4h hypoxia, whereas apoptotic cell death under 10% O2, 4h, is due to NOS-dependent •NO. The management of ROS/RNS rather than ATP is required for improved survival during hypoxia. O2-• production from mitochondria and NOS is cardiotoxic during hypoxia/reperfusion. NF-?B activation during hypoxia and NOS activation during reperfusion is cardiomyoblast protective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both reactive oxygen species (ROS) and ATP depletion may be significant in hypoxia-induced damage and death, either collectively or independently, with high energy requiring, metabolically active cells being the most susceptible to damage. We investigated the kinetics and effects of ROS production in cardiac myoblasts, H9C2 cells, under 2%, 10% and 21% O2 in the presence or absence of apocynin, rotenone and carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone. H9C2 cells showed significant loss of viability within 30 min of culture at 2% oxygen which was not due to apoptosis, but was associated with an increase in protein oxidation. However, after 4 h, apoptosis induction was observed at 2% oxygen and also to a lesser extent at 10% oxygen; this was dependent on the levels of mitochondrial superoxide anion radicals determined using dihydroethidine. Hypoxia-induced ROS production and cell death could be rescued by the mitochondrial complex I inhibitor, rotenone, despite further depletion of ATP. In conclusion, a change to superoxide anion radical steady state level was not detectable after 30 min but was evident after 4 h of mild or severe hypoxia. Superoxide anion radicals from the mitochondrion and not ATP depletion is the major cause of apoptotic cell death in cardiac myoblasts under chronic, severe hypoxia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chagas disease, which is caused by the intracellular protozoan Trypanosoma cruzi , is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol- 3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.