874 resultados para Growth performance
Resumo:
Global aquaculture has expanded rapidly to address the increasing demand for aquatic protein needs and an uncertain future for wild fisheries. To date, however, most farmed aquatic stocks are essentially wild and little is known about their genomes or the genes that affect important economic traits in culture. Biologists have recognized that recent technological advances including next generation sequencing (NGS) have opened up the possibility of generating genome wide sequence data sets rapidly from non-model organisms at a reasonable cost. In an era when virtually any study organism can 'go genomic', understanding gene function and genetic effects on expressed quantitative trait locus phenotypes will be fundamental to future knowledge development. Many factors can influence the individual growth rate in target species but of particular importance in agriculture and aquaculture will be the identification and characterization of the specific gene loci that contribute important phenotypic variation to growth because the information can be applied to speed up genetic improvement programmes and to increase productivity via marker-assisted selection (MAS). While currently there is only limited genomic information available for any crustacean species, a number of putative candidate genes have been identified or implicated in growth and muscle development in some species. In an effort to stimulate increased research on the identification of growth-related genes in crustacean species, here we review the available information on: (i) associations between genes and growth reported in crustaceans, (ii) growth-related genes involved with moulting, (iii) muscle development and degradation genes involved in moulting, and; (iv) correlations between DNA sequences that have confirmed growth trait effects in farmed animal species used in terrestrial agriculture and related sequences in crustacean species. The information in concert can provide a foundation for increasing the rate at which knowledge about key genes affecting growth traits in crustacean species is gained.
Resumo:
The effects of a range of different sublethal salinities were assessed on physiological processes and growth performance in the freshwater ‘tra’ catfish (Pangasianodon hypophthalmus) juveniles over an 8-week experiment. Fish were distributed randomly among 6 salinity treatments [2, 6, 10, 14 and 18 g/L of salinity and a control (0 g/L)] with a subsequent 13-day period of acclimation. Low salinity conditions from 2 to 10 g/L provided optimal conditions with high survival and good growth performance, while 0 g/L and salinities[14 g/L gave poorer survival rates (p\0.05). Salinity levels from freshwater to 10 g/L did not have any negative effects on fish weight gain, daily weight gain, or specific growth rate. Food conversion ratio, however, was lowest in the control treatment (p\0.05) and highest at the maximum salinities tested (18 g/L treatment). Cortisol levels were elevated in the 14 and 18 g/L treatments after 6 h and reached a peak after 24-h exposure, and this also led to increases in plasma glucose concentration. After 14 days, surviving fish in all treatments appeared to have acclimated to their respective conditions with cortisol levels remaining under 5 ng/ mL with glucose concentrations stable. Tra catfish do not appear to be efficient osmoregulators when salinity levels exceed 10 g/L, and at raised salinity levels, growth performance is compromised. In general, results of this study confirm that providing culture environments in the Mekong River Basin do not exceed 10 g/L salinity and that cultured tra catfish can continue to perform well.
Resumo:
This project is a step towards assessing the effects of climate change on the tra catfish industry in Vietnam. The methods were designed to evaluate possible effects of salinity and temperature increase and their interaction on fish physiological parameters, growth performance, survival and the expression of stress related genes. Results indicated that tra had higher overall performance at 35oC with 6ppt salinity and therefore should cope with moderate predicted outcomes of climate change for the region. The experiments were mostly conducted in the Mekong Delta, Vietnam - the centre of the tra catfish industry with the cooperation of Can Tho University – Can Tho City – Vietnam.
Resumo:
A candidate gene approach using type I single nucleotide polymorphism (SNP) markers can provide an effective method for detecting genes and gene regions that underlie phenotypic variation in adaptively significant traits. In the absence of available genomic data resources, transcriptomes were recently generated in Macrobrachium rosenbergii to identify candidate genes and markers potentially associated with growth. The characterisation of 47 candidate loci by ABI re-sequencing of four cultured and eight wild samples revealed 342 putative SNPs. Among these, 28 SNPs were selected in 23 growth-related candidate genes to genotype in 200 animals selected for improved growth performance in an experimental GFP culture line in Vietnam. The associations between SNP markers and individual growth performance were then examined. For additive and dominant effects, a total of three exonic SNPs in glycogen phosphorylase (additive), heat shock protein 90 (additive and dominant) and peroxidasin (additive), and a total of six intronic SNPs in ankyrin repeats-like protein (additive and dominant), rolling pebbles (dominant), transforming growth factor-β induced precursor (dominant), and UTP-glucose-1-phosphate uridylyltransferase 2 (dominant) genes showed significant associations with the estimated breeding values in the experimental animals (P =0.001−0.031). Individually, they explained 2.6−4.8 % of the genetic variance (R2=0.026−0.048). This is the first large set of SNP markers reported for M. rosenbergii and will be useful for confirmation of associations in other samples or culture lines as well as having applications in marker-assisted selection in future breeding programs.
Resumo:
Local, exotic and hybrid tilapia fingerlings were fed 45% crude protein diet containing 18% fish meal in a flow through system in triplicate and their growth and food utilization observed for 14 weeks. At the end of the study, the hybrid (Exotic Oreochromis niloticus male x Exotic Oreochromis aureus female) fingerlings had higher growth rate and food conversion ratio (FCR) than the other treatments. This was followed by Exotic Oreochromis niloticus fingerlings. The exotic Oreochromis niloticus fingerlings came next while the local Oreochromis niloticus fingerlings were the least in growth performance. The survival rate of the local O. niloticus was however higher than the other treatments
Resumo:
An investigative study was carried out on the growth performance and nutrient utilization of (Clarias gariepinus) fingerlings fed earthworm meal as a replacement for fish meal. A large collection of earthworm was done during the peak of rainy season (July-August) within the University environment. They were then ovens dried. Used as test ingredients were 0% (Diet 1) 50% (Diet 2) and 1000% (Diet u). The trials were conducted in plastic bowls (40-L capacity) under laboratory conditions. The diets were fed at 5% body weight to fish; the fish were stocked at 10 fish per bowl. The evaluation of the growth parameters showed that there was no significant difference (P>0.05) in mean weight gain (MWG) specific growth rate (SGR) food conversion ratio (FCR), protein efficiency ration (PER) and survival among the fish fed the experimental diets
Resumo:
Replicate Ponds of 0.02ha stocked at 500 catfishes with 20,000 tilapia/ha were used to assess growth performance of O.niloticus, average weight 50.4g with (i) darted catfish; H.longifilis (shooters) average weight 60.3g (ii) non-shooters of H.longifilis, average weight 35.4g. Final mean weight, mean growth rate, specific growth rate and food conversion ratio were 499.5g 26g/day, 1.36% and 5.58% respectively for O.niloticus stocked with longifilis (shooters and 440.4g 2.3g/day 1.23% and 5.58% respectively for O.niloticus stocked withH.longifilis (non- shooters) and 246.9g, 1.2g/day, 0.93, 6.30% respectively for tilapia in monoculture. The least growth was noted for O. niloticus in monoculture while the best growth was recorded O. niloticus in polyculture with darted catfish
Resumo:
Oreochromis niloticus fingerlings (mean weight 5.27~c0.29g) were fed raw and boiled Delonix regia seed meals following standard procedures. The weight gain, specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), net protein utilization (NPU) were determined as growth indices. Diet formulated with seed boiled for 80 minutes showed significantly (P<0.05) high values for the growth indices. Carcass nutrients composition were significantly (P<0.05) higher than in the control (raw) diet. Delonix regia seed meal when boiled has high potential of being utilized efficiently by O.niloticus. The implications of the respective index in fish metabolism are discussed
Resumo:
Replicate Ponds of 0.02ha stocked at 500 catfishes with 20,000 tilapia/ha were used to assess growth performance of O.niloticus, average weight 50.4g with (i) darted catfish; H.longifilis (shooters) average weight 60.3g (ii) non-shooters of H.longifilis, average weight 35.4g. Final mean weight, mean growth rate, specific growth rate and food conversion ratio were 499.5g 26g/day, 1.36% and 5.58% respectively for O.niloticus stocked with longifilis (shooters) and 440.4g 2.3g/day 1.23% and 5.58% respectively for O.niloticus stocked with H.longifilis (non- shooters) and 246.9g, 1.2g/day, 0.93, 6.30% respectively for tilapia in monoculture. The least growth was noted for O. niloticus in monoculture while the best growth was recorded O. niloticus in polyculture with darted catfish
Resumo:
70-day growth trial was conducted with Heteroclarias: Heterobranchus bidorsalis X Clarias gariepinus (mean weight 0.64~c0.006g) fed diets based on various inclusion levels of Maggot Meal. The fishmeal in the control diet was replaced with maggot meals at 25%, 50%, 75% and 100% levels to supply 40% crude protein in the final diets. The trails were conducted in glass tanks (60cmx30cmx30cm). Evaluation of growth parameters and nutrient utilization of the fish was based on weight gains, protein intake, protein efficiency ratio, net protein utilization, feed conversion efficiency and carcass analysis. Best growth and feed conversion efficiency were obtained with the 75% dietary inclusion of maggot meal. There was no significant differences (P>0.055) between the group of fish on 50% and 75% dietary inclusion maggot meal in growth performance and protein efficiency ratio but, there was a significant (P<0.05) difference in the NPU (Net Protein Utilization) and protein gain between the control diet and those fed on maggot meals. There was no marked variation in the survival rate of fish on all diets