997 resultados para Grazing systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pasture productivity can drop due to soil compaction caused by animal trampling. Physical and mechanical alterations are therefore extremely important indicators for pasture management. The objective of this research was to: draw and evaluate the Mohr failure line of a Red Yellow Latossol under different pasture cycles and natural forest; calculate apparent cohesion; observe possible physical alterations in this soil; and propose a correction factor for stocking rates based on shear strength properties. This study was conducted between March/2006 and March/2007 on the Experimental Farm of Fundação de Ensino Superior de Passos, in Passos, state of Minas Gerais. The total study area covered 6 ha, of which 2 ha were irrigated pasture, 2 ha non-irrigated pasture and 2 ha natural forest. Brachiaria brizantha cv. MG-5 Vitória was used as forage plant. The pasture area was divided into paddocks. The Mohr failure line of samples of a Red Yellow Latossol under irrigated pasture equilibrated at a tension of water content of 6 kPa indicated higher shear strength than under non-irrigated pasture. The shear strength under irrigated pasture and natural forest was higher than under non-irrigated pasture. At a tension of water content of 33 kPa no difference was found in shear strength between management and use. Possible changes in soil structure were caused by apparent cohesion. The values of the correction factor were close to 1, which may indicate a possible soil compaction in prolonged periods of management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The communal lands of the Eastern Cape have been regarded as both tools and problems by policy-makers. In particular, communal lands are problematised as environmentally degraded, of suboptimum productivity and constraining economic development. The Eastern Cape Communal Lands Research Project was framed within this policy discourse with the aim of introducing legume-based pasture into ‘abandoned arable lands’. Initial results from community workshops show that the institutional arrangements for these arable lands vary widely and, with them, the capacity to utilise any new technology that may have application to them. Rather than simply draw on social capital, if a participatory research approach is to enhance the agency of the participating communites, it may need to contribute to social capital building and especially to create a dialogical space in which the matters being researched can be discussed meaningfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty-six acres of central Iowa corn land were seeded to bromegrass and divided with high-tensile wire into eight seven-acre plots. This bromegrass was fertilized with 70 pounds of nitrogen each spring and fall, 1987-1990. In 1991 – 1995, the nitrogen was increased to 80 pounds both spring and fall. The plots were stocked with 1.3 cow/calf pairs per acre in 1987-1991 and 1993–1995, but in 1992 the plots were stocked with 1.55 cow/calf pairs per acre. The pairs were rotated using two distinct schemes among four cells for about 150 days. The plots averaged 607 pounds of net calf weight per acre per year over nine years. Rainfall was quite variable during the grazing seasons and was reflected in calf performance as well as summer feed costs. This intensive rotational grazing system has greatly reduced both weed population and the need for mechanical clipping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economic comparisons of income on highly erodible land (HEL) in Adams County were made utilizing five years of grazing data collected from a 13- paddock intensive-rotational grazing system and a four-paddock rotational-grazing system and four years of data collected from an 18-paddock intensive-rotational grazing system, all at the Adams County CRP Research and Demonstration Farm near Corning. Net income from the average grazing weight-gain of Angus-sired calves nursing crossbred cows was compared to the net income from grazing yearling steers, to the net income of eight NRCS-recommended crop rotations, and to the Conservation Reserve Program (CRP) option. Results of these comparisons show the 13-paddock intensive rotational grazing system with cow-calf pairs to be the most profitable alternative, with a net return of $19.86 per acre per year. The second most profitable alternative is the CRP option, with a net return of $13.09 per acre, and the third most profitable option is the fourpaddock rotation with cows and calves with a net return of $12.53 per acre. An 18-paddock system returned a net income of $2.47 per acre per year with cows and calves in 1993, but lost an average of $107.69 per acre each year in 1994 and 1995 with yearling steers. Each year, the steers were purchased high and sold low, contributing to the large loss per acre. The following recommended crop rotations all show net losses on these 9-14 % slope, Adair-Shelby Complex soils (ApD3): continuous corn; corn-soybean rotation; corn-soybean rotation with a farm program deficiency payment; corn-corn-corn-oats-meadow-meadow rotation with grass headlands; continuous corn to “T” with grass headlands and buffer strips; continuous corn to “T” with grass headlands, buffer strips, and a deficiency payment; corn-corn-oats-meadow rotation to “T”; and corn-soybeans-oats-meadow-meadow-meadow-meadow rotation to “T”. Per-acre yield assumptions of 90 bushels for corn, 30 bushels for soybeans, 45 bushels for oats, and four tons for alfalfa were used, with per-bushel prices of $2.40 on corn, $5.50 on soybeans, and $1.50 on oats. Alfalfa hay was priced at $40.00 per ton and grass hay at $33.33 per ton. The calf weight-gain in the cow/ calf systems was valued at $.90 per pound. All crop expenses except land costs were calculated from ISU publication Fm 1712, “Estimated Costs of Crop Production in Iowa - 1995.” Land costs were determined by using an opportunity cost and actual property tax figures for the land at the grazing site. In preparation for the end of the CRP beginning in 1996, further economic comparisons will be made after additional grazing seasons and data collection. This project is an interagency cooperative effort sponsored by the Southern Iowa Forage and Livestock Committee which has special permission from the USDA Farm Service Agency (FSA) to use CRP land for research and demonstration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural land has been identified as a potential source of greenhouse gas emissions offsets through biosequestration in vegetation and soil. In the extensive grazing land of Australia, landholders may participate in the Australian Government’s Emissions Reduction Fund and create offsets by reducing woody vegetation clearing and allowing native woody plant regrowth to grow. This study used bioeconomic modelling to evaluate the trade-offs between an existing central Queensland grazing operation, which has been using repeated tree clearing to maintain pasture growth, and an alternative carbon and grazing enterprise in which tree clearing is reduced and the additional carbon sequestered in trees is sold. The results showed that ceasing clearing in favour of producing offsets produces a higher net present value over 20 years than the existing cattle enterprise at carbon prices, which are close to current (2015) market levels (~$13 t–1 CO2-e). However, by modifying key variables, relative profitability did change. Sensitivity analysis evaluated key variables, which determine the relative profitability of carbon and cattle. In order of importance these were: the carbon price, the gross margin of cattle production, the severity of the tree–grass relationship, the area of regrowth retained, the age of regrowth at the start of the project, and to a lesser extent the cost of carbon project administration, compliance and monitoring. Based on the analysis, retaining regrowth to generate carbon income may be worthwhile for cattle producers in Australia, but careful consideration needs to be given to the opportunity cost of reduced cattle income.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pastures containing hay-type and grazing tolerant alfalfa hybrids were grazed in a season-long or complimentary rotational stocking system with Nfertilized smooth bromegrass. The pastures were stocked at a seasonal density of .8 cow-calf pairs per acre for 120 days. Pastures were intensively managed by daily strip-stocking with the assumptions that 50% of live forage was available and daily live dry matter consumption of each cow-calf pair was 3.5% of the cow’s body weight. First-cutting forage was harvested as hay from 40% of pasture acres to remove excess forage growth early in the grazing season. Forage was grazed from the remaining 60% of each pasture for the first 44 days of the experiment and then from the entire pasture thereafter. Live forage yields, estimated by monthly clippings, were greater in May and September on the season-long alfalfa pastures compared with the complementary pastures and on the alfalfa pastures compared with the N-fertilized smooth bromegrass pastures. The proportions of legumes in the live dry matter in pastures with grazing tolerant and hay-type alfalfas in the season-long grazing systems declined by 70% and 50%, respectively, in the 120 day trial. The proportions of legumes in the live dry matter in pastures with grazing tolerant and the hay-type alfalfas in the complementary grazing system declined 60% and 42%, respectively, in the 120 day trial. Cows grazing either alfalfa hybrid by either management system had greater weight gains during the breeding and grazing seasons and greater increases in body condition score prebreeding and during the breeding season than the cows that grazed N-fertilized smooth bromegrass for the entire season. Also, cows grazing either alfalfa in the season-long system had greater breeding season increases in body condition score than cows grazing alfalfa in the complementary system with N-fertilized smooth bromegrass. Daily gains and seasonal gains of calves from cows grazing the alfalfa pastures tended to be greater than those grazing N-fertilized smooth bromegrass. Within alfalfa treatments, calves of cows grazing alfalfa pastures in the season-long system tended to produce more pounds per acre than those of cows grazing alfalfa in the complementary systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to assess the sward canopy structure of Brachiaria brizantha cv. Marandu pastures maintained in three grazing intensities under continuous stocking system during the rainy season, along with the behavior and performance of grazing beef heifers supplemented with mineral salt or an energy/protein supplement. Three levels of forage allowance were assessed: 2.0, 2.5 and 3.0 kg of forage/kg of live weight, combined with two supplements (ad libitum mineral salt, and an energy/protein supplement at 0.3% of live weight/day, supplied daily). The experiment was designed as a randomized block study with two replications. The supplements did not influence the variables related to the canopy structure. Canopy height was greater at higher forage allowances during the late summer and early fall. Similarly, the stem mass was greater in pastures with higher forage allowances. Animals fed protein supplement spent less time grazing than animals supplemented with mineral salt. Stocking rate was higher in pastures with lower forage allowance levels, which increased the live weight gain per grazing area. Daily weight gain did not vary according to the forage allowance levels. The use of an energy/protein supplement did not affect the stocking rate; however, it increased individual live weight gain and live weight gain per grazing area compared with mineral salt supplementation. The use of energy/protein supplements is an efficient alternative to enhance animal performance and production under grazing systems during the rainy season

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intensive grazing systems for beef females, based on abundant availability of high quality forages and supplementary concentrates, may affect fetal development. The objective of this study was to determine the effect of grazing system on length of gestation, fetal development, and characteristics of the calf at birth. Twenty-four pregnant (bred to Nellore bulls) Nellore females were allocated into two groups. The control group (G1) grazed Brachiaria decumbens (signal grass) in a traditional (extensive) grazing system and the second group (G2) were managed on Panicum maximumcv. Tanzania 1 (Tanzania grass) in an intensive grazing system. Fetal development was evaluated by ultrasonography on days 31, 45, 59, 94, 122, 220, and 255 of gestation. The diameter of the amniotic and allantoic cavities, crown-rump length, circumference, and diameter of the head and ocular orbit were determined. At birth, calves were weighed and height, length, thoracic circumference, and ocular orbit and bi-parietal diameters were measured. There were no differences (P > 0.05) in fetal development. The G1 cows had a longer gestation period (4.5 days; P < 0.05) and their calves had greater (P < 0.05) weight, height, length, and thoracic circumference at birth. In conclusion, Nellore females raised under intensive pasture management conditions, had significantly shorter gestation and smaller calves at birth than those raised under extensive pasture management conditions. Therefore, adoption of new management practices (e.g. intensive pasture management), should take into consideration animal behavior and productivity. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two rotational-grazing systems, a 13-paddock and a 4-paddock, have been demonstrated on CRP land near Corning, Iowa since 1991 and this report summarizes the 2001 production data. Establishment of this project was to show economically feasible grass alternatives to row crops and CRP for steeply sloping (9% - 14% slope), highly-erodible land (HEL). Stocking rates were 1.57 and 1.72 acres per pair on the 13- and 4-paddock systems, respectively. In a 119 day grazing season calves gained 2.23 and 2.27 lbs/day for the 13- and 4-paddock systems, while cows gained 51.4 and 113.4 lbs, respectively. While some system hay growth was utilized to stave off drought conditions, there was a net hay gain of 11 and 5.5 bales of hay for the 13- and 4-paddock systems, respectively

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two grazing systems were demonstrated on Conservation Reserve Program (CRP) land in southwestern Iowa near Corning in the summers of 1991, 1992, 1993, 1994, and 1995. This report summarizes the 1995 data and compares them to results from the four previous years. The systems, a 13-paddock intensive-rotational grazing system and a 4-paddock more traditional rotation, both established in 1991, are aimed at showing economically sustainable grass alternatives for steeply sloping (9-14% slope), highly erodible land (HEL) once the 10-year CRP ends. In a 147-day grazing season in 1995, nursing crossbred calves with no creep gained 2.36 pounds and 2.38 pounds per day on the 13- and 4-paddock systems, respectively. The rotations were stocked at 1.65 acres per cow-calf pair on the 13-paddock system and 1.72 acres per pair on the 4-paddock system. This produced 210.2 pounds of calf gain per acre on the 13-paddock system and 203.2 pounds of calf gain per acre on the 4- paddock system.. Similar calves gained 2.37 pounds and 2.50 pounds per day for 155 days, yielding a total gain per acre of 222.7 pounds on the 13-paddock system and 224.9 pounds on the 4-paddock system in 1994. Results for 1992 remain the highest from both systems in the five years of grazing, with calf gain per head per day at 2.45 for 155 days netting 241.9 pounds per acre on the 13- paddock system and calf gain per head per day at 2.38 for 154 days on the 4-paddock system yielding 263.6 pounds per acre. Cows maintained both their weight and condition scores in both systems again in 1995. A third system, the 18-paddock intensive-rotational grazing system, was stocked with stocker steers in 1995, and the results are reported in a second article in the 1996 ISU Beef Research Report entitled “Intensive- Rotational Grazing Steers on Highly Erodible Land at the Adams County CRP Project.” Concerning grazing management, paddocks were grazed four, five, or six times in the 13-paddock intensive- rotational grazing system during the 147-day grazing season of 1995. This number of times grazed per paddock was nearly equal to times grazed per paddock in 1994. However, several paddocks were subdivided temporarily to equalize paddock size and increase grazing uniformity. This increased the total number of cattle moves in the 13-paddock system from 78 in 1994 to 109 in 1995. The average length of stay on each paddock or subdivision of a paddock per grazing time was 1 to 2.2 days. This was less than in any of the other four grazing years in this project. The principle of not grazing more than half the standing forage during any one grazing period was closely followed in 1995. All paddocks in the 13-paddock system were also rested approximately the recommended 30 days between each grazing cycle in 1995.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The trees, hedgerows and woods are current configuration of the tree network in several ecological regions of the world. In Trás–os–Montes region, Northeast of Portugal, they are a traditional component of Terra fria landscape and they could be seen in several forms: scatter trees, fencerows, small woodlots, riparian buffer strips, among others. The extensive livestock systems in this region are based on a set of circuits across the landscape. In this practice, flocks interacts with these structures using them for different functions inducing an influence on the itineraries. Our purpose will be focused on the woody features of landscape regarding their configurations, abundance and spacial distribution; in order to examine how the grazing systems depends on the currency of these formations; particularly how species flocks behaviors are related on. Depending on spatial data, The investigation attain to compare the tree network within the agriculture matrix, to the grazed territory crossed by flocks. From the other side, the importance of spatial data on interpreting the issue by suggesting different parameter that may influence the circuits. The recognition of the pressure exerciced by the occurence of the woody structures on the grazed circuits is possible. We believe that the role of these woody structures features in supporting the tradicional silvopastoral systems has been sufficiently strong for change their distribution pattern.