945 resultados para Grassland Degradation
Resumo:
Supported by MSS images in the mid and late 1970s, TM images in the early 1990s and TM/ETM images in 2004, grassland degradation in the "Three-River Headwaters" region (TRH region) was interpreted through analysis on IRS images in two time series, then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s. The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale, and rapidly strengthen phenomenon did not exist in the 1990s as a whole. Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s. Since the 1970s, this degradation process has taken place continuously, obviously characterizing different rules in different regions. In humid and semi-humid meadow region, grassland firstly fragmentized, then vegetation coverage decreased continuously, and finally "black-soil-patch" degraded grassland was formed. But in semi-arid and and steppe region, the vegetation coverage decreased continuously, and finally desertification was formed. Because grassland degradation had obviously regional differences in the TRH region, it could be regionalized into 7 zones, and each zone had different characteristics in type, grade, scale and time process of grassland degradation.
Resumo:
大范围、实时、准确地监测典型草原地区草场退化或健康状况对于草原生态系统的保育、农牧业的可持续性发展具有非常重要的意义。比起传统的群落学研究方法,遥感技术对于监测大尺度的植被状况具有无可争议的优越性,并且已经被广泛引入监测植被覆盖变化的研究中。本项研究系统地分析、综述了过去用非遥感手段对放牧和草场退化的关注和研究,介绍了遥感技术应用于植被研究的理论基础、主要途径(植被指数)、有关领域的研究进展。特别是本文提出草场退化状况或整体健康状况可以由基干相互独立的层面表示,而过去监测植被变化主要依赖的NDVI等植被指数只能监测草原植被的个别层面(总量层)。 本文以草场放牧退化比较典型的内蒙古锡林河流域为研究对象,在进行了大量的野外样方调查的基础上,提出一种结合群落样方调查和遥感技术的监测草场健康状况的新方法。本文引入主成份分析方法(PCA),从包含12个反映群落各方面信息的变量中提取出3个有特定生态学意义的主成份,并进一步对其进行分析组合,得出一个能比较敏感、全面反映群落健康状况的新指标-草场健康指数(GHI)。 从6波段的植被光谱反射数据中比较理想地提取出2个主成份:可见光因子和红外光因子。表征群落总量、放牧退化的主成份和GHI与样方光谱反射值有相当的相关性,由此得到GHI与可光、红外光因子的回归模型。 应用此模型到卫星遥感数据(TM),得到GHI影像,并与同一数据的NDVI影像作对比研究,发现GHI在反映放牧等人为干扰对草原植被的影响效应方面比NDVI有明显的优点。此外,GHI影像对植被分布格局,特别是斑块结构有更好的显示效果。应用GHI到历史TM数据,对所研究地域的植被覆盖变化、农牧业的变迁模式等进行了定性研究。研究还发现有较长放牧史的过度放牧区的植被类型没有沿牧压梯度的规律性分布,而是呈随机斑块分布模式。
Resumo:
通过群落生态学和景观生态学方法,结合GIS、RS技术对锡林河流域湿地植被进行了研究。结果表明:流域湿地面积为301.62km2,占流域面积的3%左右。尽管面积相对较小,但是物种丰富,群落结构多样。植被调查数据显示基本确定的植被型4个,植被亚型6个,群系组16个,群系68个,区系成分以泛北极种为主,占69%,相对简单;按照水分生态型划分,中生物种占最多,为44.32%;按生活型分以多年生草本为主占50%以上;科属分布相对复杂,隶属39个科,其中禾本科和菊科是最大的两个科,所占比例仅有17.30%和12.43%,其他科没有明显的优势性,充分说明湿地优越的生境可以满足多种植物共同生长。 多度分布是研究物种多样性分布的重要组分,同时反映了群落结构的特性。以常用的Lognormal、Logseries和Weibull、Exp、Power模型来拟和6个典型草甸群落和踏头草甸群落的物种多度分布,分log-相对多度-物种级数和物种-游程两种形式进行比较;同时,对于典型草甸群落和踏头群落区分常见种、偶然种等进行细化,深入分析群落多度的变化。结果表明,5个模型对于log-相对多度-物种级数在整个群落水平上均不能很好的拟和,50%以上的点都落在95%置信区间以外;但是对常见种和偶然种的拟和情况要好,Weibull、Power和Logseris模型分别对典型草甸群落常见种、偶然种和中间种能很好的拟和,而Logseries和Power模型对于踏头群落的常见种和偶然种拟和较好。5个模型都能较好的拟和物种-游程分布,其中K—S检验结果表明:Lognormal模型对于无脉苔草、针苔草和荸荠这类相对湿润环境下的典型草甸群落拟和较好,对于长叶火绒草和密花风毛菊群落Weibull拟和最好,Power 模型拟和箭叶橐吾最好,踏头草甸拟和最好的是Logseries模型,踏头间拟合最好的是Exp模型。不同的拟和模型应用于不同的群落类型,可以看出湿地群落的复杂性和生境的多样性。区分常见种和偶然种的拟合结果表明典型群落和踏头群落表现一致,即Lognormal模型对所有种拟和是最好的,而Power模型对偶然种的拟和是最好的,同时,Lognormal对典型草甸群落的中间种拟和也是最好。从中可以看出典型草甸群落和踏头群落尽管在表现形式上不同,但是群落的内部仍存在相似的联系,可能跟相似物种的作用有关。 根据湿地表观类型、植被水分状态和航片判别能力,结合实地调查,采用监督分类的方法将锡林河流域的湿地划分为低湿地草甸、盐化草甸和沼泽三种类型。自1984年以来20多年的时间中,锡林河流域的湿地发生了巨大的变化。尽管总的面积没有太大变化,但是湿地类型发生转化。中上游的低湿地草甸面积减少8.94%,沼泽面积减少30.82%,同时,盐化草甸的面积增加了15.98%。增加的盐化草甸主要是另外两种湿地类型转化而成的,中游水库截流,加速中下游草甸的盐化是锡林河流域湿地变化的主要原因。利用GIS技术依据探讨不同湿地的空间变化,分析沙化对湿地变化的影响,结果表明:沙化只对少数湿地有影响,发育良好的湿地即使处在相对强烈的沙化环境下,仍能保持不变。接着,分析了人类直接干扰对湿地变化的影响,缓冲区居民点分析结果表明:近20年来,位于湿地周边的居民点分布格局发生显著的变化。1980年代,居民点分布在盐化草甸周边的最多,到2004年,居民点在沼泽草甸分布数量为最多,该类湿地水、草和资源最为丰富,人类直接的干扰最大,进而转化成另外两类,减少面积最大。低湿地草甸是物种丰富,结构复杂的一种湿地,抗干扰能力强,恢复能力也强,因此相对的变化面积较小。以锡林浩特市水库上下游的湿地植被物种和群落结构的变化,证明了水量减少是湿地数量、结构改变的直接影响因子。
Resumo:
锡林郭勒草原位于内蒙古自治区中部,草地面积居我国11片重点牧区之首,是我国温带典型草原的核心分布区和重要的草地畜牧业生产基地。长期以来,锡林郭勒草原作为我国北方地区的一道重要的绿色生态屏障,有效地阻止了草原腹地的土壤侵蚀、沙化以及来自中亚和我国西部的沙尘侵害,对于维持整个华北地区,特别是京、津大都市的生态环境安全起着极其重要的作用。然而,近几十年来,由于人类活动的强度干扰锡林郭勒草原发生了严重退化,生产力显著降低,草原的生态服务功能日益衰减。本文以锡林郭勒草原传统的游牧文化和草地利用方式的变迁作为切入点,以锡林河流域为案例,深入分析了社会驱动力在草地退化过程中的主导作用,目的在于揭示土地利用方式的变化、农牧业人口的剧增和牲畜数量在时间和空间分布的变化趋势与锡林河流域草地退化的关系,进而探求锡林河流域草地畜牧业的可持续发展途径。同时,近年来由于草地退化速度的加剧和草地退化面积的不断扩张,以及世界许多资源保护计划和可持续发展项目的失败,人类原始的土著文化对当地生态环境的保护和维持作用,引起了自然和社会科学界共同的关注,本文应用草地调查和社会调查的方法以及GIS技术对锡林河流域草地退化时空分布规律及其成因进行了研究。 原始游牧是锡林郭勒草原历史悠久的草地利用方式,而草原游牧文化则是蒙古族传统文化的重要组成部分。随着人类社会不断地走向文明和现代化,传统的游牧逐渐地被半定居和定居定牧的方式所取代,蒙古族传统的草原游牧文化也随之走向衰落。本文采用社会调查方法对锡林河流域已经结束了50多年的游牧利用方式进行考察,探讨了不同土地利用方式时空格局,以及土地利用方式变迁对草地退化格局的影响,进而强调了传统的草原游牧文化对于人类的行为规范、价值观念、环境保护和维持生态系统功能的重要意义。 以1984年和2004年开展的大量草地调查数据为基础,结合同期的TM数据,分析了20年来锡林河流域草地退化程度及其空间分布,结果发现锡林河流域草地退化面积达到70%之多,从东南向西北草地退化程度明显加剧。同上世纪80年代中期相比,锡林河流域植被在近20余年来的变化状况表现为:局部恢复,部分地区变化不明显,总体上呈现出不断恶化的发展势头。通过对位于 锡林河流域的锡林浩特市及其邻近地区的社会驱动因子的分析,并应用统计学和GIS空间分析的方法,对锡林河流域土地利用、牧业人口和牲畜数量等因子在近35年来的变化过程进行了系统研究,发现土地利用变化、人口的急剧增加、以及过度放牧是导致锡林河流域草地退化加剧的主要原因。 在上述分析的基础上,以适应性生态系统管理和可持续性科学的基本理论为指导,对锡林河流域的生态环境保护和草地畜牧业的可持续发展提出了一些具体的建议和措施。
Resumo:
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.
Resumo:
Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23-31% that of the control.
Resumo:
Grassland management affects soil organic carbon (SOC) storage and can be used to mitigate greenhouse gas emissions. However, for a country to assess emission reductions due to grassland management, there must be an inventory method for estimating the change in SOC storage. The Intergovernmental Panel on Climate Change (IPCC) has developed a simple carbon accounting approach for this purpose, and here we derive new grassland management factors that represent the effect of changing management on carbon storage for this method. Our literature search identified 49 studies dealing with effects of management practices that either degraded or improved conditions relative to nominally managed grasslands. On average, degradation reduced SOC storage to 95% +/- 0.06 and 97% +/- 0.05 of carbon stored under nominal conditions in temperate and tropical regions, respectively. In contrast, improving grasslands with a single management activity enhanced SOC storage by 14% 0.06 and 17% +/- 0.05 in temperate and tropical regions, respectively, and with an additional improvement(s), storage increased by another 11% +/- 0.04. We applied the newly derived factor coefficients to analyze C sequestration potential for managed grasslands in the U.S., and found that over a 20-year period changing management could sequester from 5 to 142 Tg C yr(-1) or 0.1 to 0.9 Mg C ha(-1) yr(-1), depending on the level of change. This analysis provides revised factor coefficients for the IPCC method that can be used to estimate impacts of management; it also provides a methodological framework for countries to derive factor coefficients specific to conditions in their region.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.
Resumo:
Dry matter intake (DMI) of coast-cross grazing by crossbred Holstein-Zebu and Zebu lactating cows was calculated using in vitro dry matter digestibility from extrusa (four esophageal fistulated cows) and fecal output estimate with mordent chromium. Pasture was rotationally grazed with three days grazing period and 27 days testing period, adopting a stocking rate of 1.6 and 3.2 cows/ha, during the dry and rainy season respectively. Voluntary DMI was estimated from degradation characteristics using different equations. Predicted coast-cross DMI varied with models. The prediction of tropical forages dry matter intake from equations based in ruminal degradation parameters needs farther investigation before being employed in practice.
Resumo:
Organic soils in peatlands store a great proportion of the global soil carbon pool and can lose carbon via the atmosphere due to degradation. In Germany, most of the greenhouse gas (GHG) emissions from organic soils are attributed to sites managed as grassland. Here, we investigated a land use gradient from near-natural wetland (NW) to an extensively managed (GE) to an intensively managed grassland site (GI), all formed in the same bog complex in northern Germany. Vertical depth profiles of δ13C, δ15N, ash content, C / N ratio and bulk density as well as radiocarbon ages were studied to identify peat degradation and to calculate carbon loss. At all sites, including the near-natural site, δ13C depth profiles indicate aerobic decomposition in the upper horizons. Depth profiles of δ15N differed significantly between sites with increasing δ15N values in the top soil layers paralleling an increase in land use intensity owing to differences in peat decomposition and fertilizer application. At both grassland sites, the ash content peaked within the first centimetres. In the near-natural site, ash contents were highest in 10–60 cm depth. The ash profiles, not only at the managed grassland sites, but also at the near-natural site indicate that all sites were influenced by anthropogenic activities either currently or in the past, most likely due to drainage. Based on the enrichment of ash content and changes in bulk density, we calculated the total carbon loss from the sites since the peatland was influenced by anthropogenic activities. Carbon loss at the sites increased in the following order: NW < GE < GI. Radiocarbon ages of peat in the topsoil of GE and GI were hundreds of years, indicating the loss of younger peat material. In contrast, peat in the first centimetres of the NW was only a few decades old, indicating recent peat growth. It is likely that the NW site accumulates carbon today but was perturbed by anthropogenic activities in the past. Together, all biogeochemical parameters indicate a degradation of peat due to (i) conversion to grassland with historical drainage and (ii) land use intensification.