1000 resultados para Geomorphological analysis
Resumo:
Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.
Resumo:
The aim of this work is to use GIS integration data to characterize sedimentary processes in a SubTropical lagoon environment. The study area was the Canan,ia Inlet estuary in the southeastern section of the Canan,ia Lagoon Estuarine System (CLES), state of So Paulo, Brazil (25A degrees 03'S/47A degrees 53'W). The area is formed by the confluence of two estuarine channels forming a bay-shaped water body locally called "Trapand, Bay". The region is surrounded by one of the most preserved tracts of Atlantic Rain Forest in Southwestern Brazil and presents well-developed mangroves and marshes. In this study a methodology was developed using integrated a GIS database based on bottom sediment parameters, geomorphological data, remote sensing images, Hidrodynamical Modeling data and geophysical parameters. The sediment grain size parameters and the bottom morphology of the lagoon were also used to develop models of net sediment transport pathways. It was possible to observe that the sediment transport vectors based on the grain size model had a good correlation with the transport model based on the bottom topography features and Hydrodynamic model, especially in areas with stronger energetic conditions, with a minor contribution of finer sediments. This relation is somewhat less evident near shallower banks and depositional features. In these regions the organic matter contents in the sediments was a good complementary tool for inferring the hydrodynamic and depositional conditions (i.e. primary productivity, sedimentation rates, sources, oxi-reduction rates).
Resumo:
The Partido Stream is a small torrential course that flows into the marsh of the Doñana National Park, an area that was declared a World Heritage Site in 1994. Before 1981, floods occurred, and the stream overflowed onto a floodplain. As an old alluvial fan, the floodplain has its singular orography and functionality. Fromthe floodplain, several drainage channels, locally called caño, discharged into themarsh. The Partido Streamhad themorphology of a caño and covered approximately 8 km from the old fan to the marsh. The stream was straightened and channelised in 1981 to cultivate the old fan. This resulted in floods that were concentrated between the banks in the following years, which caused the depth of water and the shear stress to increase, thus, scouring the river bed and river banks. In this case, the eroded materials were carried towards the marsh where a new alluvial fan evolved. Control measures on the old fan were implemented in 2006 to stop the development of the new alluvial fan downstream over the marsh. Thus, the stream would partially recover its original behaviour that it had before channelisation, moving forwards in a new, balanced state. The present study describes the geomorphological evolution that channelisation has caused since 1981 and the later slow process of recovery of the original hydraulic-sedimentation regime since 2006. Additionally, it deepens the understanding of the original hydraulic behaviour of the stream, combining field data and 2D simulations.
Hydraulic and fluvial geomorphological models for a bedrock channel reach of the Twenty Mile Creek /
Resumo:
Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.
Resumo:
Surface roughness is an important geomorphological variable which has been used in the Earth and planetary sciences to infer material properties, current/past processes, and the time elapsed since formation. No single definition exists; however, within the context of geomorphometry, we use surface roughness as an expression of the variability of a topographic surface at a given scale, where the scale of analysis is determined by the size of the landforms or geomorphic features of interest. Six techniques for the calculation of surface roughness were selected for an assessment of the parameter`s behavior at different spatial scales and data-set resolutions. Area ratio operated independently of scale, providing consistent results across spatial resolutions. Vector dispersion produced results with increasing roughness and homogenization of terrain at coarser resolutions and larger window sizes. Standard deviation of residual topography highlighted local features and did not detect regional relief. Standard deviation of elevation correctly identified breaks of slope and was good at detecting regional relief. Standard deviation of slope (SD(slope)) also correctly identified smooth sloping areas and breaks of slope, providing the best results for geomorphological analysis. Standard deviation of profile curvature identified the breaks of slope, although not as strongly as SD(slope), and it is sensitive to noise and spurious data. In general, SD(slope) offered good performance at a variety of scales, while the simplicity of calculation is perhaps its single greatest benefit.
Resumo:
Análisis del riesgo volcánico. We show the preliminary results of the study of 561 volcanic bombs ejected from a pyroclastic cone during the 1730-1736 Timanfaya eruption (Lanzarote, Canary Islands). This cone displays the highest concentration of big bombs (major axis higher than 1 m) of Timanfaya. More than 560 bombs have been studied to calculate their reach. The results suggest that bombs of 1t have a reach of 409 m, while bombs up to 28 t have a reach of 248 m. These data may be used to define a security area once a vent has been opened, but also to calculate other data such the initial velocity of ejection. The geomorphological analysis and the study of the deposits also contribute to better understand an undocumented episode of the Timanfaya eruption and also provide important data for volcanic bombs modeling for volcanic hazard analysis.
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN] We present a geomorphological analysis of Ourense Province (NW Spain) characterized by: a general narrowing of the fluvial network, highlands with smooth reliefs partially eroded and lowlands with residual reliefs, several extensive plains of erosion frequently limited by fractures -among which Tertiary grabens are inserted-, some ?Hollow Surface?-type morphology, absence of sedimentary deposits outside the grabens, and a generalized outcrop of the Hercynian Massif substratum. Traditionally, this ?piano?s keyboard morphology? has been interpreted as expression of block tectonics in tensile regimen; instead we suggest the existence of: an isostatic upheaval simultaneous to a sequence of tectonic pulses of compressive regimen with activity in favour of transcurrent faults, a General Surface (R600), several plains that present a ?Hollow Surface?-type morphology (R1600 R1400 R1000), a generalized alteration that correspond to a same process of decomposition associated to fluctuating conditions of redox equilibrium, a erosional terraces related principaly to the palaeo-fluvial nets; moreover, we propose the existence of two morphoestructural lineament: the first one represented by the Fault of Vila Real (NE-SW) -a ramification of the ?Basal Pyrenean Overthrust?-, that would have been active at an early moment of the tectonic sequence with a left transcurrent fault, secondly the lineament represented by the Fault of Maceda (NNW-SSE) that would be related to the ?Fault System NW-SE? and would have produced a right transcurrent fault during a late tectonic pulse.
Resumo:
VIII Congreso geológico de España, Oviedo, 17-19 julio 2012
Resumo:
Ce mémoire décrit, en premier lieu, l’analyse géotechnique et géomorphologique du glissement de 1971 à Casselman, Ontario. Les caractéristiques morphologiques identifiées à l’intérieur de la cicatrice confirment qu’il s’agit d’un étalement. Le sol impliqué est une argile sensible de la mer de Champlain, normalement à légèrement surconsolidée (OCR entre 1,0 et 1,2) dont les indices de liquidité varient entre 1,0 et 2,0. La résistance au cisaillement intacte mesurée au scissomètre de chantier varie entre 50 kPa et 87 kPa. L’argile adopte un comportement anti-écrouissage (perte de 40 % de la résistance en pic) lorsque soumise à des essais de cisaillement non-drainé. Une surface de rupture quasi-horizontale à deux niveaux principaux a été identifiée à partir des sondages au piézocône réalisés à l’intérieur de la cicatrice. Les coefficients de sécurité élevés obtenus à partir de méthodes à l’équilibre limite démontrent que la rétrogression ne peut être expliquée par des méthodes d’analyses conventionnelles. La deuxième partie du mémoire présente l’application numérique du principe de rupture progressive aux étalements de Casselman (1971) et de Saint-Luc-de-Vincennes (1986). Une étude paramétrique a été réalisée afin d’évaluer l’influence de la fragilité du comportement après la résistance en pic du sol, reliée dans l’étude à une épaisseur de bande de cisaillement, ainsi que de la résistance à grande déformation, sur l’initiation et la rétrogression résultant du processus de rupture progressive. Les résultats démontrent que la résistance à grande déformation a très peu d’influence sur l’initiation du processus de rupture progressive, qui est principalement influencé par la fragilité du comportement du sol. Il a aussi été observé que la rétrogression était majoritairement influencée par la résistance à grande déformation.