892 resultados para Geometria analítica plana


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo desta pesquisa é a construção e a aplicação de uma organização didática para a Geometria Analítica Plana, a partir do estudo dos Vetores, no 3º ano do ensino médio, à luz da Teoria Antropológica do Didático de Yves Chevallard e da teoria da Aprendizagem Significativa de David Ausubel. A pesquisa é de natureza qualitativa do tipo etnográfica na educação, de acordo com Marli André, e foi desenvolvido com um grupo de alunos em um contexto específico que é a preparação para o vestibular. A manipulação de objetos ostensivos para compreensão dos objetos não-ostensivos da Matemática serviu de categorias para análise das praxeologias vivenciadas em sala de aula. Concluímos que os alunos ao manipular as representações de objetos ostensivos resgatam conhecimentos matemáticos de forma articulada e integrada para a ancoragem de novos conhecimentos matemáticos. Observou-se também que a organização didática permite “economia de tempo”, no que diz respeito ao estudo destes conteúdos nesta etapa da vida escolar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este artículo se describe una experiencia desarrollada con alumnos de 1º de bachillerato de la modalidad de Ciencias y Tecnología (16 y 17 años) durante el curso escolar 2009/10, con el objetivo de trabajar los problemas métricos de geometría analítica plana, utilizando las nuevas tecnologías. En concreto se utiliza el programa Geogebra, la plataforma digital de formación Moodle y la pizarra digital interactiva (PDI). El programa Geogebra nos ayuda a estudiar gráficamente los problemas, además de comprobar sus resultados analíticos; con la plataforma Moodle se consigue que el alumnado dedique de forma efectiva más tiempo al estudio mientras está fuera del centro y la PDI les permite visualizar la resolución gráfica e interactuar en su corrección. En el artículo se describe el contexto en el que se desarrolla la experiencia, el alumnado a quién va dirigida, los objetivos que se pretenden, un ejemplo de problema desarrollado en el aula y otro por los alumnos en sus casas. Finalmente se valora la experiencia y los resultados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Geometria Analítica é parte integrante dos conteúdos a serem trabalhados na Educação Básica. Além disso, os conceitos trabalhados na Educação Básica são aprofundados nos componentes curriculares dos cursos de graduação das ciências exatas tais como Engenharia, Ciências da Computação, Arquitetura, Matemática, Física, etc. Seu estudo é relevante, pois é uma ferramenta importante para o Cálculo Diferencial e Integral e é uma das principais referências em um primeiro curso de Álgebra Linear. Este trabalho tem por objetivo apresentar um estudo histórico e epistemológico das primeiras contribuições da Geometria. É importante que o professor discuta os acontecimentos históricos ao trabalhar com os conteúdos da Geometria Analítica, propor aos alunos os problemas matemáticos que originaram os conceitos da Geometria Analítica e possibilite ao aluno a construção do conhecimento e não apenas para a resolução de algoritmos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study will introduce a brief history of the Geometry development, focused in the appearing of the organization in the logical deductive structure achieved by Euclid. Following will be discussed the situation of the learning and teaching of geometry topics since antiquity until the present day, where we will notice that it does not happen with the logical-deductive perspective. After this contextualization, we will propose the realization of a geometry workshop for students of the sixth grade of elementary school, focusing to the development of logical-deductive reasoning. Applied to workshop, changes were observed in the organization of thought of the participating students in the research, furthering the understanding of the concepts and properties of flat euclidean geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As imagens da parede do poço obtidas através da ferramenta UBI (Ultrasonic Borehole Imager) são amplamente utilizadas por geólogos e engenheiros de petróleo para identificar eventos geológicos nas paredes de poços abertos e na inspeção dos tubos de revestimento, uma vez que este perfil praticamente fornece uma fotografia da parede do poço. As ferramentas de imageamento acústico produzem imagens do tempo de trânsito e da amplitude do pulso acústico gerado pela ferramenta e refletido na parede do poço. Entretanto, estas imagens podem ter uma interpretação não realista, uma vez que elas podem ter seu aspecto alterado em razão do movimento da ferramenta no interior do poço. Este trabalho apresenta o modelamento das imagens de tempo de trânsito a partir da aplicação do critério de Coulomb para a ruptura da parede do poço submetida a um estado plano de tensões, a qual fornecerá a seção do poço, que é a forma geométrica que será traçada pela ferramenta de imageamento acústico do poço. O deslocamento ascensional da ferramenta e as imperfeições da parede do poço, normalmente, são os responsáveis pelo deslocamento da posição do transdutor em relação ao eixo do poço. Este efeito pode ter grande responsabilidade nas imperfeições das imagens de tempo de trânsito. Assim, a correção dessas imagens, chamada de correção da descentralização, busca o reposicionamento do transdutor para a posição do eixo do poço. Apresenta-se, também, um método de correção do efeito da descentralização da ferramenta baseado neste modelamento. O método é proposto com base na geometria analítica plana e no método do raio para a definição do tempo de trânsito do pulso acústico, com o objetivo de reconstruir as imagens de tempo de trânsito obtidas com a ferramenta descentralizada, ou seja, corrigir estas imagens tornando-as como se fossem obtidas com a ferramenta centralizada em relação ao eixo do poço.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo do presente trabalho é realizar a concepção de um sistema para a aprendizagem de demonstrações da Geometria Euclidiana Plana e a implementação de um protótipo deste sistema, denominado LEEG - Learning Environment on Euclidean Geometry, desenvolvido para validar as idéias utilizadas em sua especificação. Nos últimos anos, tem-se observado uma crescente evolução dos sistemas de ensino e aprendizagem informatizados. A preocupação com o desenvolvimento de ambientes cada vez mais eficientes, tanto do ponto de vista computacional quanto pedagógico, tem repercutido em um salto de qualidade dos software educacionais. Tais sistemas visam promover, auxiliar e motivar a aprendizagem das mais diversas áreas do conhecimento, utilizando técnicas de Inteligência Artificial para se aproximarem ao máximo do comportamento de um tutor humano que se adapte e atenda às necessidades de cada aluno. A Geometria pode ser vista sob dois aspectos principais: considerada como uma ciência que estuda as representações do plano e do espaço e considerada como uma estrutura lógica, onde a estrutura matemática é representada e tratada no mais alto nível de rigor e formalismo. Entretanto, o ensino da Geometria, nos últimos anos, abandonou quase que totalmente sua abordagem dedutiva. Demonstrações de teoremas geométricos não são mais trabalhadas na maioria das escolas brasileiras, o que repercute em um ensino falho da Matemática, que não valoriza o desenvolvimento de habilidades e competências relacionadas à experimentação, observação e percepção, realização de conjecturas, desenvolvimento de argumentações convincentes, entre outras. Levando-se em conta este cenário, desenvolveu-se o LEEG, um sistema para a aprendizagem de demonstrações geométricas que tem como objetivo auxiliar um aprendiz humano na construção de demonstrações da Geometria Euclidiana Plana. O sistema foi modelado sobre uma adaptação do protocolo de aprendizagem MOSCA, desenvolvido para suportar ambientes de ensino informatizados, cuja aprendizagem é baseada na utilização de exemplos e contra-exemplos. Este protocolo propõe um ambiente de aprendizagem composto por cinco agentes, dentre os quais um deles é o aprendiz e os demais assumem papéis distintos e específicos que completam um quadro de ensino-aprendizagem consistente. A base de conhecimento do sistema, que guarda a estrutura lógica-dedutiva de todas as demonstrações que podem ser submetidas ao Aprendiz, foi implementada através do modelo de autômatos finitos com saída. A utilização de autômatos com saída na aplicação de modelagem de demonstrações dedutivas foi extremamente útil por permitir estruturar os diferentes raciocínios que levam da hipótese à tese da proposição de forma lógica, organizada e direta. As demonstrações oferecidas pelo sistema são as mesmas desenvolvidas por Euclides e referem-se aos Fundamentos da Geometria Plana. São demonstrações que priorizam e valorizam a utilização de objetos geométricos no seu desenvolvimento, fugindo das demonstrações que apelam para a simples manipulação algébrica e que não oferecem uma construção significativa do ponto de vista da Geometria. Porém, mesmo sendo consideradas apenas as demonstrações contidas em Elements, todos os diferentes raciocínios para uma mesma demonstração são aceitos pelo sistema, dando liberdade ao aprendiz no processo de construção da demonstração.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Durante siglos, la geometría y el álgebra se fueron desarrollando como disciplinas matemáticas diferentes. El filósofo y matemático francés René Descartes, publicó en el año 1637 su tratado La Géométrie en el que introdujo un método para unir esas dos ramas de la matemática, llamado Geometría Analítica, basado en el uso de sistemas coordenados, por medio de los cuales, los procesos algebraicos se pueden aplicar al estudio de la geometría. La Geometría Analítica permite hallar y estudiar los lugares geométricos de forma sistemática y general. Provee de métodos para transformar los problemas geométricos en problemas algebraicos, resolverlos analíticamente e interpretar geométricamente los resultados. Geometría Analítica para Ciencias e Ingenierías, es un texto cuyo principal objetivo es acompañar el proceso de enseñanza y aprendizaje de un curso de Geometría analítica de nivel universitario de grado, promoviendo en el estudiante el desarrollo de habilidades de observación, comparación, análisis, síntesis e integración de conceptos tanto de la Geometría Analítica plana como de la espacial. Los contenidos que se estudian en este texto tienen gran variedad de aplicaciones en investigaciones matemáticas, en astronomía, física, química, biología, ingeniería, economía, entre otros. El texto se encuentra dividido en 5 capítulos, cada uno de los cuales cuenta con el desarrollo de contenidos teóricos, ejercicios y problemas de aplicación.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Através de alguns exemplos práticos, pretende-se defender que o conhecimento geométrico e, em particular, o conhecimento das curvas cónicas e suas aplicações, pode potenciar o trabalho projetual dos designers, diminuir os custos de hardware e software no ensino e no trabalho profissional, diminuir a necessidade de recurso a meios sofisticados e caros, reduzir a necessidade de permanente atualização dos meios tecnológicos, e de utilização de software que implique formação especializada e, sobretudo, que necessite de longos períodos de formação. Temos em vista contribuir para o reconhecimento da importância do estudo destas curvas e das superfícies por elas geradas, em especial no ensino da Geometria em cursos de Design. De facto, a partir da sistematização do conhecimento existente em outras áreas, como, por exemplo, a arquitetura e as engenharias, pelo aprofundamento da adaptação de propriedades das cónicas e de conhecimentos de áreas, como a geometria analítica ou a projetiva para a linguagem dos traçados geométricos, e pela contribuição com a sugestão de novos traçados, pode desenvolver-se a capacidade dos designers e estudantes de design resolverem problemas, no âmbito do projeto, na representação técnica e na comunicação externa com não peritos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os resultados apresentados referem-se à pesquisa sobre a transição Ensino Médio e Superior para as noções de Geometria Analítica. O referencial teórico da pesquisa é a Teoria Antropológica do Didático de Bosch e Chevallard (1999), a noção de quadro de Douady (1984), a noção de ponto de vista de Rogalski (1995, 2001) e a abordagem teórica em termos de níveis de conhecimento de Robert (1997). As análises das relações institucionais foram efetuadas por meio de documentos oficiais e livros didáticos e as relações pessoais por meio de macro avaliações. Os resultados encontrados mostram uma crescente preocupação institucional com a articulação dos ostensivos e não ostensivos associados às noções de Geometria Analítica e uma tendência em deixar o tratamento do espaço IR3 para Ensino Superior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este livro pretende ser um documento onde a ligação entre a abordagem clássica da Álgebra Linear habitualmente encontrada na literatura e a Teoria de Matrizes seja apresentada de forma simples e rigorosa em simultâneo com a exposição de aplicações. Conscientes da vastidão de possíveis caminhos a seguir na apresentação das matérias inerentes à Álgebra e ao Cálculo Matricial, os autores optaram por seguir uma orientação que tivesse em linha de conta a atual tendência para a diminuição dos tempos letivos e incentivo à utilização de software MATLAB®, principalmente nos cursos de Engenharia. Neste sentido, este livro está organizado em cinco capítulos – Revisão de conceitos elementares, Cálculo matricial e determinantes, Sistemas de equações lineares, Espaços vetoriais e transformações lineares e Geometria analítica – ao longo dos quais se procurou obedecer a uma estrutura evolutiva em torno do rigor e da formalidade, mas sem excessos de nomenclatura. No final de cada capítulo, é proporcionado um conjunto de exercícios variados e não repetitivos, em número suficiente e equilibrado, apresentando-se alguns deles já resolvidos, propondo-se outros para resolução e ilustrando algumas aplicações práticas de integração de conhecimentos, recorrendo ao software MATLAB®.