926 resultados para Genomic data integration
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.
Resumo:
Similarity-based operations, similarity join, similarity grouping, data integration
Resumo:
L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. The investigation of exactly how much benefit can be brought by geophysical data in terms of its effect on hydrological predictions, however, has received considerably less attention in the literature. Here, we examine the potential hydrological benefits brought by a recently introduced simulated annealing (SA) conditional stochastic simulation method designed for the assimilation of diverse hydrogeophysical data sets. We consider the specific case of integrating crosshole ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation, we first generate a number of synthetic porosity fields exhibiting varying degrees of spatial continuity and structural complexity. Next, we simulate the collection of crosshole GPR data between several boreholes in these fields, and the collection of porosity log data at the borehole locations. The inverted GPR data, together with the porosity logs, are then used to reconstruct the porosity field using the SA-based method, along with a number of other more elementary approaches. Assuming that the grid-cell-scale relationship between porosity and hydraulic conductivity is unique and known, the porosity realizations are then used in groundwater flow and contaminant transport simulations to assess the benefits and limitations of the different approaches.
Resumo:
BACKGROUND: There is an ever-increasing volume of data on host genes that are modulated during HIV infection, influence disease susceptibility or carry genetic variants that impact HIV infection. We created GuavaH (Genomic Utility for Association and Viral Analyses in HIV, http://www.GuavaH.org), a public resource that supports multipurpose analysis of genome-wide genetic variation and gene expression profile across multiple phenotypes relevant to HIV biology. FINDINGS: We included original data from 8 genome and transcriptome studies addressing viral and host responses in and ex vivo. These studies cover phenotypes such as HIV acquisition, plasma viral load, disease progression, viral replication cycle, latency and viral-host genome interaction. This represents genome-wide association data from more than 4,000 individuals, exome sequencing data from 392 individuals, in vivo transcriptome microarray data from 127 patients/conditions, and 60 sets of RNA-seq data. Additionally, GuavaH allows visualization of protein variation in ~8,000 individuals from the general population. The publicly available GuavaH framework supports queries on (i) unique single nucleotide polymorphism across different HIV related phenotypes, (ii) gene structure and variation, (iii) in vivo gene expression in the setting of human infection (CD4+ T cells), and (iv) in vitro gene expression data in models of permissive infection, latency and reactivation. CONCLUSIONS: The complexity of the analysis of host genetic influences on HIV biology and pathogenesis calls for comprehensive motors of research on curated data. The tool developed here allows queries and supports validation of the rapidly growing body of host genomic information pertinent to HIV research.
Resumo:
Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.
Resumo:
A newspaper content management system has to deal with a very heterogeneous information space as the experience in the Diari Segre newspaper has shown us. The greatest problem is to harmonise the different ways the involved users (journalist, archivists...) structure the newspaper information space, i.e. news, topics, headlines, etc. Our approach is based on ontology and differentiated universes of discourse (UoD). Users interact with the system and, from this interaction, integration rules are derived. These rules are based on Description Logic ontological relations for subsumption and equivalence. They relate the different UoD and produce a shared conceptualisation of the newspaper information domain.
Resumo:
Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.
Resumo:
About 50% of living species are holometabolan insects. Therefore, unraveling the ori- gin of insect metamorphosis from the hemimetabolan (gradual metamorphosis) to the holometabolan (sudden metamorphosis at the end of the life cycle) mode is equivalent to explaining how all this biodiversity originated. One of the problems with studying the evolution from hemimetaboly to holometaboly is that most information is available only in holometabolan species. Within the hemimetabolan group, our model, the cock- roach Blattella germanica, is the most studied species. However, given that the study of adult morphogenesis at organismic level is still complex, we focused on the study of the tergal gland (TG) as a minimal model of metamorphosis. The TG is formed in tergites 7 and 8 (T7-8) in the last days of the last nymphal instar (nymph 6). The comparative study of four T7-T8 transcriptomes provided us with crucial keys of TG formation, but also essential information about the mechanisms and circuitry that allows the shift from nymphal to adult morphogenesis.
Resumo:
An investigation using the Stepping Out model of early hominin dispersal out of Africa is presented here. The late arrival of early hominins into Europe, as deduced from the fossil record, is shown to be consistent with poor ability of these hominins to survive in the Eurasian landscape. The present study also extends the understanding of modelling results from the original study by Mithen and Reed (2002. Stepping out: a computer simulation of hominid dispersal from Africa. J. Hum. Evol. 43, 433-462). The representation of climate and vegetation patterns has been improved through the use of climate model output. This study demonstrates that interpretative confidence may be strengthened, and new insights gained when climate models and hominin dispersal models are integrated. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the decade since OceanObs `99, great advances have been made in the field of ocean data dissemination. The use of Internet technologies has transformed the landscape: users can now find, evaluate and access data rapidly and securely using only a web browser. This paper describes the current state of the art in dissemination methods for ocean data, focussing particularly on ocean observations from in situ and remote sensing platforms. We discuss current efforts being made to improve the consistency of delivered data and to increase the potential for automated integration of diverse datasets. An important recent development is the adoption of open standards from the Geographic Information Systems community; we discuss the current impact of these new technologies and their future potential. We conclude that new approaches will indeed be necessary to exchange data more effectively and forge links between communities, but these approaches must be evaluated critically through practical tests, and existing ocean data exchange technologies must be used to their best advantage. Investment in key technology components, cross-community pilot projects and the enhancement of end-user software tools will be required in order to assess and demonstrate the value of any new technology.
Resumo:
In order to best utilize the limited resource of medical resources, and to reduce the cost and improve the quality of medical treatment, we propose to build an interoperable regional healthcare systems among several levels of medical treatment organizations. In this paper, our approaches are as follows:(1) the ontology based approach is introduced as the methodology and technological solution for information integration; (2) the integration framework of data sharing among different organizations are proposed(3)the virtual database to realize data integration of hospital information system is established. Our methods realize the effective management and integration of the medical workflow and the mass information in the interoperable regional healthcare system. Furthermore, this research provides the interoperable regional healthcare system with characteristic of modularization, expansibility and the stability of the system is enhanced by hierarchy structure.