981 resultados para Genetic drift


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most HIV replication occurs in solid lymphoid tissue, which has prominent architecture at the histological level, which separates groups of productively infected CD4+ cells. Nevertheless, current population models of HIV assume panmixis within lymphoid tissue. We present a simple “metapopulation” model of HIV replication, where the population of infected cells is comprised of a large number of small populations, each of which is established by a few founder viruses and undergoes turnover. To test this model, we analyzed viral genetic variation of infected cell subpopulations within the spleen and demonstrated the action of founder effects as well as significant variation in the extent of genetic differentiation between subpopulations among patients. The combination of founder effects and subpopulation turnover can result in an effective population size much lower than the actual population size and may contribute to the importance of genetic drift in HIV evolution despite a large number of infected cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. Results: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). Conclusions: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North-and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used allozyme, microsatellite, and mitochondrial DNA (mtDNA) data to test for spatial and interannual genetic diversity in wall-eye pollock (Theragra chalcogramma) from six spawning aggregations representing three geographic regions: Gulf of Alaska, eastern Bering Sea, and eastern Kamchatka. Interpopulation genetic diversity was evident primarily from the mtDNA and two allozyme loci (SOD-2*, MPI*). Permutation tests ˆindicated that FST values for most allozyme and microsatellite loci were not significantly greater than zero. The microsatellite results suggested that high locus polymorphism may not be a reliable indicator of power for detecting population differentiation in walleye pollock. The fact that mtDNA revealed population structure and most nuclear loci did not suggests that the effective size of most walleye pollock populations is large (genetic drift is weak) and migration is a relatively strong homogenizing force. The allozymes and mtDNA provided mostly concordant estimates of patterns of spatial genetic variation. These data showed significant genetic variation between North American and Asian populations. In addition, two spawning aggregations in the Gulf of Alaska, in Prince William Sound, and off Middleton Island, appeared genetically distinct from walleye pollock spawning in the Shelikof Strait and may merit management as a distinct stock. Finally, we found evidence of interannual genetic variation in two of three North American spawning aggregations, similar in magnitude to the spatial variation among North American walleye pol-lock. We suggest that interannual genetic variation in walleye pollock may be indicative of one or more of the following factors: highly variable reproductive success, adult philopatry, source-sink metapopulation structure, and intraannual variation (days) in spawning timing among genetically distinct but spatially identical spawning aggregates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetic biodiversity is the vaflatlOn among individuals within and between units of interbreeding individuals (populations) of a species. It includes inheritable and transmittable differences that occur between individuals andlor popuhitions of a given species through reproductive interaction. There exists enormous variability among individuals andlor populations of a species for most living organisms, and most of this variation is inheritable. differences among individuals arise through mutation and via recombination of genes during meiosis. These ifferences are then transmitted to successive generations through sexual reproduction and maintained in the populations through processes such as natural selection and genetic drift. Unfortunately much of this variation is normally threatened and often in danger of extinction because most focus in conservation of natural resources is put at saving species or habitats than varieties or strains of a species

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sequencing analysis of the mitochondrial DNA control region (mtCR DNA) was performed to assess the genetic divergence and population structure of the Chinese sucker Myxocyprinus asiaticus (Cypriniformes Catostomidae) using four sample lots from natural populations of the Yangtze River. The mtCR DNA sequences of approximately 920 base pairs were obtained. A total of 223 nucleotide positions were polymorphic, and these defined 39 haplotypes. Of the 39 haplotypes, 37 (90%) were not shared, and among the populations as a whole there was little sharing of haplotypes. The average haplotype diversity (0.958) and the average nucleotide diversity (0.052) indicated a higher level of genetic diversity of Chinese sucker through the river. Analysis of molecular variation (AMOVA) of data revealed significant partitioning of variance (P<0.001) among populations (60.29%), and within populations (39.71%). The topology according to the neighbor joining and maximum parsimony methods showed mosaic composition of the 39 haplotypes, suggesting that the populations wore not completely divergent. The pairwise F statistic values, however, indicated that the population structuring existed to some extent among the geographic populations. There was a positive relationship between the aquatic distance and the genetic distance (Fst) among the populations (P<0.05). Based on our data, it is suggested that genetic drift, gene flow, and stochastic events are the possible factors influencing the population structure and genetic variation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peat bogs represent unique ecosystems that are under particular threat from fragmentation due to peat harvesting, with only 38% of the original peatland in Europe remaining intact and unaffected by peat cutting, drainage and silviculture. In this study, we have used microsatellite markers to determine levels and patterns of genetic diversity in both cut and uncut natural populations of the peat moss Polytrichum commune. Overall diversity levels suggest that there is more genetic variation present than had previously been assumed for bryophytes. Despite this, diversity values from completely cut bogs were found to be lower than those from uncut peatlands (average 0.729 versus 0.880). In addition, the genetic diversity was more highly structured in the cut populations, further suggesting that genetic drift is already affecting genetic diversity in peat bogs subjected to fragmentation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic ( 30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals (n=415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus, it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The genetic diversity of liver fluke populations in three different countries from Eastern Europe (Greece, Bulgaria, and Poland) in comparison with available data from other countries was determined. Specifically, SNPs from regions of two nuclear genes, 28S rDNA, ß-tubulin 3 and an informative region of the mitochondrial genome were examined. Two major lineages for the 28S rDNA gene based on the highly polymorphic 105th nucleotide position were found. These lineages were widely and almost equally spread not only through the countries studied but also in other investigated geographical areas. Two basic lineages and additional haplotypes were defined for the mtDNA gene region, consisting of the cytochrome c oxidase subunit III gene, transfer RNA histidine gene and cytochome b gene. The basic lineages were observed within Greek, Bulgarian, and Polish Fasciola hepatica populations but the distribution of additional haplotypes differed between the populations from the three countries. For the ß-tubulin 3 gene multiple polymorphic sites were revealed but no explicit clades. The SNPs were spread unequally in all studied geographical regions with an evident distinction between the Greek and Polish specimens. Additional genotypes for the 28S rDNA region as well as haplotypes of the mtDNA region that were typical for the Greek or Polish populations were observed. Significant polymorphisms for ß-tubulin 3 gene were displayed with decreasing percentage of presence within populations from Greece to Poland. There was an amino acid substitution in ß-tubulin 3 protein found only among Polish specimens. It is hypothesized that genotypic differences between Greek, Bulgarian, and Polish liver fluke populations are due to territorial division and genetic drift in past epochs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.