964 resultados para Generation expansion planning
Resumo:
Electric vehicles (EV) are proposed as a measure to reduce greenhouse gas emissions in transport and support increased wind power penetration across modern power systems. Optimal benefits can only be achieved, if EVs are deployed effectively, so that the exhaust emissions are not substituted by additional emissions in the electricity sector, which can be implemented using Smart Grid controls. This research presents the results of an EV roll-out in the all island grid (AIG) in Ireland using the long term generation expansion planning model called the Wien Automatic System Planning IV (WASP-IV) tool to measure carbon dioxide emissions and changes in total energy. The model incorporates all generators and operational requirements while meeting environmental emissions, fuel availability and generator operational and maintenance constraints to optimize economic dispatch and unit commitment power dispatch. In the study three distinct scenarios are investigated base case, peak and off-peak charging to simulate the impacts of EV’s in the AIG up to 2025.
Resumo:
The generation expansion planning (GEP) problem consists in determining the type of technology, size, location and time at which new generation units must be integrated to the system, over a given planning horizon, to satisfy the forecasted energy demand. Over the past few years, due to an increasing awareness of environmental issues, different approaches to solve the GEP problem have included some sort of environmental policy, typically based on emission constraints. This paper presents a linear model in a dynamic version to solve the GEP problem. The main difference between the proposed model and most of the works presented in the specialized literature is the way the environmental policy is envisaged. Such policy includes: i) the taxation of CO(2) emissions, ii) an annual Emissions Reduction Rate (ERR) in the overall system, and iii) the gradual retirement of old inefficient generation plants. The proposed model is applied in an 11-region to design the most cost-effective and sustainable 10-technology US energy portfolio for the next 20 years.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.
Resumo:
In developing countries, a high rate of growth in the demand for electric energy is felt, and so the addition of new generating units becomes inevitable. In deregulated power systems, private generating stations are encouraged to add new generations. Some of the factors considered while placing a new generating unit are: availability of esources, ease of transmitting power, distance from the load centre, etc. Finding the most appropriate locations for generation expansion can be done by running repeated power flows and carrying system studies like analyzing the voltage profile, voltage stability, loss analysis, etc. In this paper a new methodology is proposed which will mainly consider the existing network topology. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes. This index is used for ranking the most significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on an EHV equivalent 10-bus system and IEEE 30 bus systems are presented for illustration purposes.
Resumo:
With ever increasing demand for electric energy, additional generation and associated transmission facilities has to be planned and executed. In order to augment existing transmission facilities, proper planning and selective decisions are to be made whereas keeping in mind the interests of several parties who are directly or indirectly involved. Common trend is to plan optimal generation expansion over the planning period in order to meet the projected demand with minimum cost capacity addition along with a pre-specified reliability margin. Generation expansion at certain locations need new transmission network which involves serious problems such as getting right of way, environmental clearance etc. In this study, an approach to the citing of additional generation facilities in a given system with minimum or no expansion in the transmission facility is attempted using the network connectivity and the concept of electrical distance for projected load demand. The proposed approach is suitable for large interconnected systems with multiple utilities. Sample illustration on real life system is presented in order to show how this approach improves the overall performance on the operation of the system with specified performance parameters.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
The paper presents an extended genetic algorithm for solving the optimal transmission network expansion planning problem. Two main improvements have been introduced in the genetic algorithm: (a) initial population obtained by conventional optimisation based methods; (b) mutation approach inspired in the simulated annealing technique, the proposed method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Excellent performance is reported in the test results section of the paper for a difficult large-scale real-life problem: a substantial reduction in investment costs has been obtained with regard to previous solutions obtained via conventional optimisation methods and simulated annealing algorithms; statistical comparison procedures have been employed in benchmarking different versions of the genetic algorithm and simulated annealing methods.
Resumo:
A novel constructive heuristic algorithm to the network expansion planning problem is presented the basic idea comes from Garver's work applied to the transportation model, nevertheless the proposed algorithm is for the DC model. Tests results with most known systems in the literature are carried out to show the efficiency of the method.
Resumo:
A mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints are presented. The methodology allows one to find an optimal and reliable transmission network expansion plan using a DC model to represent the electrical network. The security (n-1) criterion is used. The model presented is solved using a genetic algorithm designed to solve the reliable expansion planning in an efficient way. The results obtained for several known systems from literature show the excellent performance of the proposed methodology. A comparative analysis of the results obtained with the proposed methodology is also presented.
Resumo:
A constructive heuristic algorithm to solve the transmission system expansion planning problem is proposed with the aim of circumventing some critical problems of classical heuristic algorithms that employ relaxed mathematical models to calculate a sensitivity index that guides the circuit additions. The proposed heuristic algorithm is in a branch-and-bound algorithm structure, which can be used with any planning model, such as Transportation model, DC model, AC model or Hybrid models. Tests of the proposed algorithm are presented on real Brazilian systems.
Resumo:
A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
The transmission network planning problem is a non-linear integer mixed programming problem (NLIMP). Most of the algorithms used to solve this problem use a linear programming subroutine (LP) to solve LP problems resulting from planning algorithms. Sometimes the resolution of these LPs represents a major computational effort. The particularity of these LPs in the optimal solution is that only some inequality constraints are binding. This task transforms the LP into an equivalent problem with only one equality constraint (the power flow equation) and many inequality constraints, and uses a dual simplex algorithm and a relaxation strategy to solve the LPs. The optimisation process is started with only one equality constraint and, in each step, the most unfeasible constraint is added. The logic used is similar to a proposal for electric systems operation planning. The results show a higher performance of the algorithm when compared to primal simplex methods.