963 resultados para Generalised Linear Modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of high-density single-nucleotide polymorphism (SNP) data, such as genetic mapping and linkage disequilibrium (LD) studies, require phase-known haplotypes to allow for the correlation between tightly linked loci. However, current SNP genotyping technology cannot determine phase, which must be inferred statistically. In this paper, we present a new Bayesian Markov chain Monte Carlo (MCMC) algorithm for population haplotype frequency estimation, particulary in the context of LD assessment. The novel feature of the method is the incorporation of a log-linear prior model for population haplotype frequencies. We present simulations to suggest that 1) the log-linear prior model is more appropriate than the standard coalescent process in the presence of recombination (>0.02cM between adjacent loci), and 2) there is substantial inflation in measures of LD obtained by a "two-stage" approach to the analysis by treating the "best" haplotype configuration as correct, without regard to uncertainty in the recombination process. Genet Epidemiol 25:106-114, 2003. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a diagnostic test for the mixing distribution in a generalised linear mixed model. The test is based on the difference between the marginal maximum likelihood and conditional maximum likelihood estimates of a subset of the fixed effects in the model. We derive the asymptotic variance of this difference, and propose a test statistic that has a limiting chi-square distribution under the null hypothesis that the mixing distribution is correctly specified. For the important special case of the logistic regression model with random intercepts, we evaluate via simulation the power of the test in finite samples under several alternative distributional forms for the mixing distribution. We illustrate the method by applying it to data from a clinical trial investigating the effects of hormonal contraceptives in women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development of research methods requires a systematic review of their status. This study focuses on the use of Hierarchical Linear Modeling methods in psychiatric research. Evaluation includes 207 documents published until 2007, included and indexed in the ISI Web of Knowledge databases; analyses focuses on the 194 articles in the sample. Bibliometric methods are used to describe the publications patterns. Results indicate a growing interest in applying the models and an establishment of methods after 2000. Both Lotka"s and Bradford"s distributions are adjusted to the data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A classificação do nível de atividade física (NAF) tem-se revelado aspecto controvertido em Ciência do Esporte. Nesta perspectiva, o objetivo da presente investigação foi verificar a utilização de instrumento adaptado para classificação do NAF. Para tanto, foi desenvolvido estudo transversal seriado, considerando NAF como variável independente e a aptidão física como dependente. Identificaram-se como população de estudo calouros do curso de Medicina, em total de 290 pessoas. Foram coletados durante três anos subseqüentes, através de anamnese dirigida, informações a respeito do NAF e testes de capacidade aeróbia e muscular, para conhecer as variáveis de aptidão física (AF). A análise estatística foi realizada através do modelo Linear, sendo aplicado o teste F para avaliar o efeito das variáveis independentes, bem como a prova de Tukey para comparar as respectivas médias e o modelo de Poisson para verificar o efeito das variáveis dependentes, segundo nível de atividade física e sexo. Como principal resultado, destaca-se o fato de as pessoas que referiram maior NAF também apresentaram os melhores escores de AF indicando que a utilização do instrumento revelou-se coerente e compatível.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resumen El diseño clásico de circuitos de microondas se basa fundamentalmente en el uso de los parámetros s, debido a su capacidad para caracterizar de forma exitosa el comportamiento de cualquier circuito lineal. La relación existente entre los parámetros s con los sistemas de medida actuales y con las herramientas de simulación lineal han facilitado su éxito y su uso extensivo tanto en el diseño como en la caracterización de circuitos y subsistemas de microondas. Sin embargo, a pesar de la gran aceptación de los parámetros s en la comunidad de microondas, el principal inconveniente de esta formulación reside en su limitación para predecir el comportamiento de sistemas no lineales reales. En la actualidad, uno de los principales retos de los diseñadores de microondas es el desarrollo de un contexto análogo que permita integrar tanto el modelado no lineal, como los sistemas de medidas de gran señal y los entornos de simulación no lineal, con el objetivo de extender las capacidades de los parámetros s a regímenes de operación en gran señal y por tanto, obtener una infraestructura que permita tanto la caracterización como el diseño de circuitos no lineales de forma fiable y eficiente. De acuerdo a esta filosofía, en los últimos años se han desarrollado diferentes propuestas como los parámetros X, de Agilent Technologies, o el modelo de Cardiff que tratan de proporcionar esta plataforma común en el ámbito de gran señal. Dentro de este contexto, uno de los objetivos de la presente Tesis es el análisis de la viabilidad del uso de los parámetros X en el diseño y simulación de osciladores para transceptores de microondas. Otro aspecto relevante en el análisis y diseño de circuitos lineales de microondas es la disposición de métodos analíticos sencillos, basados en los parámetros s del transistor, que permitan la obtención directa y rápida de las impedancias de carga y fuente necesarias para cumplir las especificaciones de diseño requeridas en cuanto a ganancia, potencia de salida, eficiencia o adaptación de entrada y salida, así como la determinación analítica de parámetros de diseño clave como el factor de estabilidad o los contornos de ganancia de potencia. Por lo tanto, el desarrollo de una formulación de diseño analítico, basada en los parámetros X y similar a la existente en pequeña señal, permitiría su uso en aplicaciones no lineales y supone un nuevo reto que se va a afrontar en este trabajo. Por tanto, el principal objetivo de la presente Tesis consistiría en la elaboración de una metodología analítica basada en el uso de los parámetros X para el diseño de circuitos no lineales que jugaría un papel similar al que juegan los parámetros s en el diseño de circuitos lineales de microondas. Dichos métodos de diseño analíticos permitirían una mejora significativa en los actuales procedimientos de diseño disponibles en gran señal, así como una reducción considerable en el tiempo de diseño, lo que permitiría la obtención de técnicas mucho más eficientes. Abstract In linear world, classical microwave circuit design relies on the s-parameters due to its capability to successfully characterize the behavior of any linear circuit. Thus the direct use of s-parameters in measurement systems and in linear simulation analysis tools, has facilitated its extensive use and success in the design and characterization of microwave circuits and subsystems. Nevertheless, despite the great success of s-parameters in the microwave community, the main drawback of this formulation is its limitation in the behavior prediction of real non-linear systems. Nowadays, the challenge of microwave designers is the development of an analogue framework that allows to integrate non-linear modeling, large-signal measurement hardware and non-linear simulation environment in order to extend s-parameters capabilities to non-linear regimen and thus, provide the infrastructure for non-linear design and test in a reliable and efficient way. Recently, different attempts with the aim to provide this common platform have been introduced, as the Cardiff approach and the Agilent X-parameters. Hence, this Thesis aims to demonstrate the X-parameter capability to provide this non-linear design and test framework in CAD-based oscillator context. Furthermore, the classical analysis and design of linear microwave transistorbased circuits is based on the development of simple analytical approaches, involving the transistor s-parameters, that are able to quickly provide an analytical solution for the input/output transistor loading conditions as well as analytically determine fundamental parameters as the stability factor, the power gain contours or the input/ output match. Hence, the development of similar analytical design tools that are able to extend s-parameters capabilities in small-signal design to non-linear ap- v plications means a new challenge that is going to be faced in the present work. Therefore, the development of an analytical design framework, based on loadindependent X-parameters, constitutes the core of this Thesis. These analytical nonlinear design approaches would enable to significantly improve current large-signal design processes as well as dramatically decrease the required design time and thus, obtain more efficient approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El estudio sísmico en los últimos 50 años y el análisis del comportamiento dinámico del suelo revelan que el comportamiento del suelo es altamente no lineal e histéretico incluso para pequeñas deformaciones. El comportamiento no lineal del suelo durante un evento sísmico tiene un papel predominante en el análisis de la respuesta de sitio. Los análisis unidimensionales de la respuesta sísmica del suelo son a menudo realizados utilizando procedimientos lineales equivalentes, que requieren generalmente pocos parámetros conocidos. Los análisis de respuesta de sitio no lineal tienen el potencial para simular con mayor precisión el comportamiento del suelo, pero su aplicación en la práctica se ha visto limitada debido a la selección de parámetros poco documentadas y poco claras, así como una inadecuada documentación de los beneficios del modelado no lineal en relación al modelado lineal equivalente. En el análisis del suelo, el comportamiento del suelo es aproximado como un sólido Kelvin-Voigt con un módulo de corte elástico y amortiguamiento viscoso. En el análisis lineal y no lineal del suelo se están considerando geometrías y modelos reológicos más complejos. El primero está siendo dirigido por considerar parametrizaciones más ricas del comportamiento linealizado y el segundo mediante el uso de multi-modo de los elementos de resorte-amortiguador con un eventual amortiguador fraccional. El uso del cálculo fraccional está motivado en gran parte por el hecho de que se requieren menos parámetros para lograr la aproximación exacta a los datos experimentales. Basándose en el modelo de Kelvin-Voigt, la viscoelasticidad es revisada desde su formulación más estándar a algunas descripciones más avanzada que implica la amortiguación dependiente de la frecuencia (o viscosidad), analizando los efectos de considerar derivados fraccionarios para representar esas contribuciones viscosas. Vamos a demostrar que tal elección se traduce en modelos más ricos que pueden adaptarse a diferentes limitaciones relacionadas con la potencia disipada, amplitud de la respuesta y el ángulo de fase. Por otra parte, el uso de derivados fraccionarios permite acomodar en paralelo, dentro de un análogo de Kelvin-Voigt generalizado, muchos amortiguadores que contribuyen a aumentar la flexibilidad del modelado para la descripción de los resultados experimentales. Obviamente estos modelos ricos implican muchos parámetros, los asociados con el comportamiento y los relacionados con los derivados fraccionarios. El análisis paramétrico de estos modelos requiere técnicas numéricas eficientemente capaces de simular comportamientos complejos. El método de la Descomposición Propia Generalizada (PGD) es el candidato perfecto para la construcción de este tipo de soluciones paramétricas. Podemos calcular off-line la solución paramétrica para el depósito de suelo, para todos los parámetros del modelo, tan pronto como tales soluciones paramétricas están disponibles, el problema puede ser resuelto en tiempo real, porque no se necesita ningún nuevo cálculo, el solucionador sólo necesita particularizar on-line la solución paramétrica calculada off-line, que aliviará significativamente el procedimiento de solución. En el marco de la PGD, parámetros de los materiales y los diferentes poderes de derivación podrían introducirse como extra-coordenadas en el procedimiento de solución. El cálculo fraccional y el nuevo método de reducción modelo llamado Descomposición Propia Generalizada han sido aplicado en esta tesis tanto al análisis lineal como al análisis no lineal de la respuesta del suelo utilizando un método lineal equivalente. ABSTRACT Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis. One-dimensional seismic ground response analysis are often performed using equivalent-linear procedures, which require few, generally well-known parameters. Nonlinear analyses have the potential to more accurately simulate soil behavior, but their implementation in practice has been limited because of poorly documented and unclear parameter selection, as well as inadequate documentation of the benefits of nonlinear modeling relative to equivalent linear modeling. In soil analysis, soil behaviour is approximated as a Kelvin-Voigt solid with a elastic shear modulus and viscous damping. In linear and nonlinear analysis more complex geometries and more complex rheological models are being considered. The first is being addressed by considering richer parametrizations of the linearized behavior and the second by using multi-mode spring-dashpot elements with eventual fractional damping. The use of fractional calculus is motivated in large part by the fact that fewer parameters are required to achieve accurate approximation of experimental data. Based in Kelvin-Voigt model the viscoelastodynamics is revisited from its most standard formulation to some more advanced description involving frequency-dependent damping (or viscosity), analyzing the effects of considering fractional derivatives for representing such viscous contributions. We will prove that such a choice results in richer models that can accommodate different constraints related to the dissipated power, response amplitude and phase angle. Moreover, the use of fractional derivatives allows to accommodate in parallel, within a generalized Kelvin-Voigt analog, many dashpots that contribute to increase the modeling flexibility for describing experimental findings. Obviously these rich models involve many parameters, the ones associated with the behavior and the ones related to the fractional derivatives. The parametric analysis of all these models require efficient numerical techniques able to simulate complex behaviors. The Proper Generalized Decomposition (PGD) is the perfect candidate for producing such kind of parametric solutions. We can compute off-line the parametric solution for the soil deposit, for all parameter of the model, as soon as such parametric solutions are available, the problem can be solved in real time because no new calculation is needed, the solver only needs particularize on-line the parametric solution calculated off-line, which will alleviate significantly the solution procedure. Within the PGD framework material parameters and the different derivation powers could be introduced as extra-coordinates in the solution procedure. Fractional calculus and the new model reduction method called Proper Generalized Decomposition has been applied in this thesis to the linear analysis and nonlinear soil response analysis using a equivalent linear method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Patients with chronic obstructive pulmonary disease (COPD) can have recurrent disease exacerbations triggered by several factors, including air pollution. Visits to the emergency respiratory department can be a direct result of short-term exposure to air pollution. The aim of this study was to investigate the relationship between the daily number of COPD emergency department visits and the daily environmental air concentrations of PM(10), SO(2), NO(2), CO and O(3) in the City of Sao Paulo, Brazil. Methods: The sample data were collected between 2001 and 2003 and are categorised by gender and age. Generalised linear Poisson regression models were adopted to control for both short-and long-term seasonal changes as well as for temperature and relative humidity. The non-linear dependencies were controlled using a natural cubic spline function. Third-degree polynomial distributed lag models were adopted to estimate both lag structures and the cumulative effects of air pollutants. Results: PM(10) and SO(2) readings showed both acute and lagged effects on COPD emergency department visits. Interquartile range increases in their concentration (28.3 mg/m(3) and 7.8 mg/m(3), respectively) were associated with a cumulative 6-day increase of 19% and 16% in COPD admissions, respectively. An effect on women was observed at lag 0, and among the elderly the lag period was noted to be longer. Increases in CO concentration showed impacts in the female and elderly groups. NO(2) and O(3) presented mild effects on the elderly and in women, respectively. Conclusion: These results indicate that air pollution affects health in a gender-and age-specific manner and should be considered a relevant risk factor that exacerbates COPD in urban environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background This study aimed to evaluate the association between the total suspended particles (TSP) generated from burning sugar cane plantations and the incidence of hospital admissions from hypertension in the city of Araraquara. Methods The study was an ecological time-series study. Total daily records of hypertension (ICD 10th I10-15) were obtained from admitted patients of all ages in a hospital in Araraquara, Sao Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (mu g/m(3)) was obtained using a Handi-Vol sampler placed in downtown Araraquara. The local airport provided daily measures of temperature and humidity. In generalised linear Poisson regression models, the daily number of hospital admissions for hypertension was considered to be the dependent variable and the daily TSP concentration the independent variable. Results TSP presented a lagged effect on hypertension admissions, which was first observed 1 day after a TSP increase and remained almost unchanged for the following 2 days. A 10 mu g/m(3) increase in the TSP 3 day moving average lagged in 1 day led to an increase in hypertension-related hospital admissions during the harvest period (12.5%, 95% CI 5.6% to 19.9%) that was almost 30% higher than during non-harvest periods (9.0%, 95% CI 4.0% to 14.3%). Conclusions Increases in TSP concentrations were associated with hypertension-related hospital admissions. Despite the benefits of reduced air pollution in urban cities achieved by using ethanol produced from sugar cane to power automobiles, areas where the sugar cane is produced and harvested were found to have increased public health risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Early age at first delivery has been identified as a risk factor for high-risk HPV-type infection and cervical cancer development. Methods A cross-sectional study was carried out in a large public maternity hospital in Sao Paulo, Brazil. During June 2006 to February 2007, 301 women aged 15-24 years who gave birth to their first child were recruited between 43 and 60 days after delivery. Detection of HPV DNA in cervical specimens was performed using a standardised PCR protocol with PGMY09/11 primers. The association of selected factors with HPV infection was assessed by using a Generalised Linear Model. Results HPV DNA was detected in 58.5% (95% CI 52.7% to 64.0%) of the enrolled young women. The most common types of HPV found were: HPV16, HPV51, HPV52, HPV58 and HPV71. The overall prevalence of HPV types targeted by the HPV prophylactic vaccines was: HPV 16-12.0%, HPV 18-2.3% and HPV 6 and 11 4.3%. In the multivariate analysis, only age (inversely, p for trend=0.02) and smoking habits were independently associated with HPV infection. Conclusions The findings show that these young primiparous women had high cervical HPV prevalence, suggesting that this is a high-risk group for cervical cancer development. Nevertheless, 17.3% were positive for any of the four HPV types included in HPV vaccines (HPV6, 11, 16 or 18), with 13.3% positive for HPV 16 or 18 and only 1.0% having both vaccine related-oncogenic HPV types. Thus, young primiparous women could benefit from catch-up HPV vaccination programmes.