964 resultados para Gaussian Fields
Resumo:
2000 Mathematics Subject Classification: 60G15, 60G60; secondary 31B15, 31B25, 60H15
Resumo:
Ce mémoire porte sur l’étude des maxima de champs gaussiens. Plus précisément, l’étude portera sur la convergence en loi, la convergence du premier ordre et la convergence du deuxième ordre du maximum d’une collection de variables aléatoires gaussiennes. Les modèles de champs gaussiens présentés sont le modèle i.i.d., le modèle hiérarchique et le champ libre gaussien. Ces champs gaussiens diffèrent par le degré de corrélation entre les variables aléatoires. Le résultat principal de ce mémoire sera que la convergence en probabilité du premier ordre du maximum est la même pour les trois modèles. Quelques résultats de simulations seront présentés afin de corroborer les résultats théoriques obtenus.
Resumo:
Voir la bibliographie du mémoire pour les références du résumé. See the thesis`s bibliography for the references in the summary.
Resumo:
Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Resumo:
In this Letter, we determine the kappa-distribution function for a gas in the presence of an external field of force described by a potential U(r). In the case of a dilute gas, we show that the kappa-power law distribution including the potential energy factor term can rigorously be deduced in the framework of kinetic theory with basis on the Vlasov equation. Such a result is significant as a preliminary to the discussion on the role of long range interactions in the Kaniadakis thermostatistics and the underlying kinetic theory. (C) 2008 Elsevier B.V. All rights reserved.
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling
Resumo:
We study pathwise invariances and degeneracies of random fields with motivating applications in Gaussian process modelling. The key idea is that a number of structural properties one may wish to impose a priori on functions boil down to degeneracy properties under well-chosen linear operators. We first show in a second order set-up that almost sure degeneracy of random field paths under some class of linear operators defined in terms of signed measures can be controlled through the two first moments. A special focus is then put on the Gaussian case, where these results are revisited and extended to further linear operators thanks to state-of-the-art representations. Several degeneracy properties are tackled, including random fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process modelling. In a first numerical experiment, it is shown that dedicated kernels can be used to infer an axis of symmetry. Our second numerical experiment deals with conditional simulations of a solution to the heat equation, and it is found that adapted kernels notably enable improved predictions of non-linear functionals of the field such as its maximum.
Resumo:
Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.
Resumo:
Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.
Resumo:
Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
The analysis of paraxial Gaussian beams features in most undergraduate courses in laser physics, advanced optics and photonics. These beams provide a simple model of the field generated in the resonant cavities of lasers, thus constituting a basic element for understanding laser theory. Usually, uniformly polarized beams are considered in the analytical calculations, with the electric field vibrating at normal planes to the propagation direction. However, such paraxial fields do not verify the Maxwell equations. In this paper we discuss how to overcome this apparent contradiction and evaluate the longitudinal component that any paraxial Gaussian beam should exhibit. Despite the fact that the assumption of a purely transverse paraxial field is useful and accurate, the inclusion of the above issue in the program helps students to clarify the importance of the electromagnetic nature of light, thus providing a more complete understanding of the paraxial approach.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. We propose a performance criterion for a local descriptor based on the tradeoff between selectivity and invariance. In this paper, we evaluate several local descriptors with respect to selectivity and invariance. The descriptors that we evaluated are Gaussian derivatives up to the third order, gray image patches, and Laplacian-based descriptors with either three scales or one scale filters. We compare selectivity and invariance to several affine changes such as rotation, scale, brightness, and viewpoint. Comparisons have been made keeping the dimensionality of the descriptors roughly constant. The overall results indicate a good performance by the descriptor based on a set of oriented Gaussian filters. It is interesting that oriented receptive fields similar to the Gaussian derivatives as well as receptive fields similar to the Laplacian are found in primate visual cortex.
Resumo:
The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.