999 resultados para Gauge, Teoria de
Resumo:
Pós-graduação em Física - IFT
Resumo:
In this paper we examine in detail the implementation, with its associated difficulties, of the Killing conditions and gauge fixing into the variational principle formulation of Bianchi-type cosmologies. We address problems raised in the literature concerning the Lagrangian and the Hamiltonian formulations: We prove their equivalence, make clear the role of the homogeneity preserving diffeomorphisms in the phase space approach, and show that the number of physical degrees of freedom is the same in the Hamiltonian and Lagrangian formulations. Residual gauge transformations play an important role in our approach, and we suggest that Poincaré transformations for special relativistic systems can be understood as residual gauge transformations. In the Appendixes, we give the general computation of the equations of motion and the Lagrangian for any Bianchi-type vacuum metric and for spatially homogeneous Maxwell fields in a nondynamical background (with zero currents). We also illustrate our counting of degrees of freedom in an appendix.
Resumo:
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
Resumo:
The gauge-invariant actions for open and closed free bosonic string field theories are obtained from the string field equations in the conformal gauge using the cohomology operations of Banks and Peskin. For the closed-string theory no restrictions are imposed on the gauge parameters.
Resumo:
We study the Becchi-Rouet-Stora-Tyutin (BRST) structure of a self-interacting antisymmetric tensor gauge field, which has an on-shell null-vector gauge transformation. The Batalin-Vilkovisky covariant general formalism is briefly reviewed, and the issue of on-shell nilpotency of the BRST transformation is elucidated. We establish the connection between the covariant and the canonical BRST formalisms for our particular theory. Finally, we point out the similarities and differences with Wittens string field theory.
Resumo:
The renormalization properties of gauge-invariant composite operators that vanish when the classical equations of motion are used (class II^a operators) and which lead to diagrams where the Adler-Bell-Jackiw anomaly occurs are discussed. It is shown that gauge-invariant operators of this kind do need, in general, nonvanishing gauge-invariant (class I) counterterms.
Resumo:
Dirac's constraint Hamiltonian formalism is used to construct a gauge-invariant action for the massive spin-one and -two fields.
Resumo:
A geometrical treatment of the path integral for gauge theories with first-class constraints linear in the momenta is performed. The equivalence of reduced, Polyakov, Faddeev-Popov, and Faddeev path-integral quantization of gauge theories is established. In the process of carrying this out we find a modified version of the original Faddeev-Popov formula which is derived under much more general conditions than the usual one. Throughout this paper we emphasize the fact that we only make use of the information contained in the action for the system, and of the natural geometrical structures derived from it.
Resumo:
For a dynamical system defined by a singular Lagrangian, canonical Noether symmetries are characterized in terms of their commutation relations with the evolution operators of Lagrangian and Hamiltonian formalisms. Separate characterizations are given in phase space, in velocity space, and through an evolution operator that links both spaces. 2000 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG