1000 resultados para Gap equations
Resumo:
We derive gap equations for superconductivity in coexistence with ferromagnetism. We treat singlet and triplet states With either equal spin pairing (ESP) or opposite spin pairing (OSP) states, and study the behaviour of these states as a function of exchange splitting. For the s-wave singlet state we find that our gap equations correctly reproduce the Clogston-Chandrasekhar limiting behaviour and the phase diagram of the Baltensperger-Sarma equation (excluding the FFLO region). The singlet superconducting order parameter is shown to be independent of exchange splitting at zero temperature, as is assumed in the derivation of the Clogston-Chandrasekhar limit. P-wave triplet states of the OSP type behave similarly to the singlet state as a function of exchange splitting. On the other hand, ESP triplet states show a very different behaviour. In particular, there is no Clogston-Chandrasekhar limiting and the superconducting critical temperature, T-C, is actually increased by exchange splitting.
Resumo:
Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form 1/(k2 +m2)2 and we study the bifurcation equation finding limits on the parameter m below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of m, finding values compatible with the experimental data. We find a simple approximate relation between the fermion condensate and dynamical mass for a given representation as a function of the parameters appearing in the effective confining propagator. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are discussed.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.
The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data. © 2013 American Physical Society.
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.
Resumo:
Using coupled equations for the bosonic and fermionic order parameters, we construct families of gap solitons (GSs) in a nearly one-dimensional Bose-Fermi mixture trapped in a periodic optical-lattice (OL) potential, the boson and fermion components being in the states of the Bose-Einstein condensation and Bardeen-Cooper-Schrieffer superfluid, respectively. Fundamental GSs are compact states trapped, essentially, in a single cell of the lattice. Full families of such solutions are constructed in the first two band gaps of the OL-induced spectrum, by means of variational and numerical methods, which are found to be in good agreement. The families include both intragap and intergap solitons, with the chemical potentials of the boson and fermion components falling in the same or different band gaps, respectively. Nonfundamental states, extended over several lattice cells, are constructed too. The GSs are stable against strong perturbations.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Bioenergetics differ between males and females of many species. Human females apportion a substantial proportion of energy resources towards gynoid fat storage, to support the energetic burden of reproduction. Similarly, axial calcium accrual is favoured in females compared with males. Nutritional status is a prognostic indicator in cystic fibrosis (CF), but girls and young women are at greater risk of death despite equivalent nutritional status to males. The aim of this study was to compare fat (energy) and calcium stores (bone density) in males and females with CF over a spectrum of disease severity. Methods: Fat as % body weight (fat%) and lumbar spine (LS) and total body (TB) bone mineral density (BMD) were measured using dual absorption X-ray photometry in 127(59M) control and 101(54M) CF subjects, aged 9–25 years. An equation for predicted age at death had been determined using survival data and history of pulmonary function for the whole clinic, based on a trivariate normal model using maximum likelihood methods (1). For the CF group, a disease severity index (predicted age at death) was calculated from the derived equations according to each subjects history of pulmonary function, current age, and gender. Disease severity was classified according to percentile of predicted age at death (‘mild’ ≥75th, ‘moderate’ 25th–75th, ‘severe’ ≤25th percentile). Wt for age z-score was calculated. Serum testosterone and oestrogen were measured in males and females respectively. Fat% and LSBMD were compared between the groups using ANOVA. Results: There was an interaction between disease severity and gender: increasing disease severity was associated with greater deficits in TB (p=0.01), LSBMD (p
Resumo:
Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.