1000 resultados para Gale-Shapley algorithm
Resumo:
En esta memoria se trata el problema de encontrar un algoritmo que construya un emparejamiento entre dos grupos, entendiendo por emparejamiento la asignacion a cada individuo, de cada grupo, otro individuo. La situaci on inicial de la que parte el problema es la siguiente: Dos grupos, los proponentes y los propuestos, que est an formados por n individuos cada uno, siendo n la dimensi on del problema. El grupo de los proponentes es el encargado de hacer las propuestas a la hora de construir el emparejamiento. El grupo de los propuestos es el encargado de recibir y gestionar las propuestas a la hora de construir el emparejamiento. Cada individuo de cada grupo ordena en una lista, de manera decreciente, a individuos del otro grupo atendiendo a su preferencia a la hora de ser emparejado, a esta lista la llamaremos lista de preferencia del individuo, considerando el quedarse solo la opci on menos preferida de entre las aceptables. El objetivo del problema es crear un emparejamiento en el que cada pareja sea satisfactoria para los individuos que la crean en base a las preferencias de cada uno.
Resumo:
Using data on user attributes and interactions from an online dating site, we estimate mate preferences, and use the Gale-Shapley algorithm to predict stable matches. The predicted matches are similar to the actual matches achieved by the dating site, and the actual matches are approximately efficient. Out-of-sample predictions of offline matches, i.e., marriages, exhibit assortative mating patterns similar to those observed in actual marriages. Thus, mate preferences, without resort to search frictions, can generate sorting in marriages. However, we underpredict some of the correlation patterns; search frictions may play a role in explaining the discrepancy.
Resumo:
Authors of experimental, empirical, theoretical and computational studies of two-sided matching markets have recognized the importance of correlated preferences. We develop a general method for the study of the effect of correlation of preferences on the outcomes generated by two-sided matching mechanisms. We then illustrate our method by using it to quantify the effect of correlation of preferences on satisfaction with the men-propose Gale-Shapley matching for a simple one-to-one matching problem.
Resumo:
Men's and women's preferences are intercorrelated to the extent that men rank highly those women who rank them highly. Intercorrelation plays an important but overlooked role in determining outcomes of matching mechanisms. We study via simulation the effect of intercorrelated preferences on men's and women's aggregate satisfaction with the outcome of the Gale-Shapley matching mechanism. We conclude with an application of our results to the student admission matching problem.
Resumo:
Let IaS,a"e (d) be a set of centers chosen according to a Poisson point process in a"e (d) . Let psi be an allocation of a"e (d) to I in the sense of the Gale-Shapley marriage problem, with the additional feature that every center xi aI has an appetite given by a nonnegative random variable alpha. Generalizing some previous results, we study large deviations for the distance of a typical point xaa"e (d) to its center psi(x)aI, subject to some restrictions on the moments of alpha.
Resumo:
Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top-k nodes problem and 2) lambda-coverage problem. In the top-k nodes problem, we are required to find a set of k key nodes that would maximize the number of nodes being influenced in the network. The lambda-coverage problem is concerned with finding a set of k key nodes having minimal size that can influence a given percentage lambda of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top-k nodes problem and the lambda-coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient. Note to Practitioners-In recent times, social networks have received a high level of attention due to their proven ability in improving the performance of web search, recommendations in collaborative filtering systems, spreading a technology in the market using viral marketing techniques, etc. It is well known that the interpersonal relationships (or ties or links) between individuals cause change or improvement in the social system because the decisions made by individuals are influenced heavily by the behavior of their neighbors. An interesting and key problem in social networks is to discover the most influential nodes in the social network which can influence other nodes in the social network in a strong and deep way. This problem is called the target set selection problem and has two variants: 1) the top-k nodes problem, where we are required to identify a set of k influential nodes that maximize the number of nodes being influenced in the network and 2) the lambda-coverage problem which involves finding a set of influential nodes having minimum size that can influence a given percentage lambda of the nodes in the entire network. There are many existing algorithms in the literature for solving these problems. In this paper, we propose a new algorithm which is based on a novel interpretation of information diffusion in a social network as a cooperative game. Using this analogy, we develop an algorithm based on the Shapley value of the underlying cooperative game. The proposed algorithm outperforms the existing algorithms in terms of generality or computational complexity or both. Our results are validated through extensive experimentation on both synthetically generated and real-world data sets.
Resumo:
In this paper, we consider the problem of selecting, for any given positive integer k, the top-k nodes in a social network, based on a certain measure appropriate for the social network. This problem is relevant in many settings such as analysis of co-authorship networks, diffusion of information, viral marketing, etc. However, in most situations, this problem turns out to be NP-hard. The existing approaches for solving this problem are based on approximation algorithms and assume that the objective function is sub-modular. In this paper, we propose a novel and intuitive algorithm based on the Shapley value, for efficiently computing an approximate solution to this problem. Our proposed algorithm does not use the sub-modularity of the underlying objective function and hence it is a general approach. We demonstrate the efficacy of the algorithm using a co-authorship data set from e-print arXiv (www.arxiv.org), having 8361 authors.
Resumo:
This dissertation mimics the Turkish college admission procedure. It started with the purpose to reduce the inefficiencies in Turkish market. For this purpose, we propose a mechanism under a new market structure; as we prefer to call, semi-centralization. In chapter 1, we give a brief summary of Matching Theory. We present the first examples in Matching history with the most general papers and mechanisms. In chapter 2, we propose our mechanism. In real life application, that is in Turkish university placements, the mechanism reduces the inefficiencies of the current system. The success of the mechanism depends on the preference profile. It is easy to show that under complete information the mechanism implements the full set of stable matchings for a given profile. In chapter 3, we refine our basic mechanism. The modification on the mechanism has a crucial effect on the results. The new mechanism is, as we call, a middle mechanism. In one of the subdomain, this mechanism coincides with the original basic mechanism. But, in the other partition, it gives the same results with Gale and Shapley's algorithm. In chapter 4, we apply our basic mechanism to well known Roommate Problem. Since the roommate problem is in one-sided game patern, firstly we propose an auxiliary function to convert the game semi centralized two-sided game, because our basic mechanism is designed for this framework. We show that this process is succesful in finding a stable matching in the existence of stability. We also show that our mechanism easily and simply tells us if a profile lacks of stability by using purified orderings. Finally, we show a method to find all the stable matching in the existence of multi stability. The method is simply to run the mechanism for all of the top agents in the social preference.
Resumo:
This paper studies a way of introducing affirmative action in the school choice problem to implement integration policies. The paper proposes the use of a natural two-step mechanism. The (equitable) first step is introduced as an adaptation of the deferred-acceptance algorithm designed by Gale and Shapley, when students are divided into two groups. The (efficient) second step captures the idea of exchanging places inherent to Gale's top trading cycle.