998 resultados para GRID ADAPTATION
Resumo:
A grid adaptation strategy for unstructured data based codes, employing a combination of hexahedral and prismatic elements, generalizable to tetrahedral and pyramidal elements has been developed.
Resumo:
A quadtree-based adaptive Cartesian grid generator and flow solver were developed. The grid adaptation based on pressure or density gradient was performed and a gridless method based on the least-square fashion was used to treat the wall surface boundary condition, which is generally difficult to be handled for the common Cartesian grid. First, to validate the technique of grid adaptation, the benchmarks over a forward-facing step and double Mach reflection were computed. Second, the flows over the NACA 0012 airfoil and a two-element airfoil were calculated to validate the developed gridless method. The computational results indicate the developed method is reasonable for complex flows.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.
Resumo:
Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.
Resumo:
FUELCON is an expert system in nuclear engineering. Its task is optimized refueling-design, which is crucial to keep down operation costs at a plant. FUELCON proposes sets of alternative configurations of fuel-allocation; the fuel is positioned in a grid representing the core of a reactor. The practitioner of in-core fuel management uses FUELCON to generate a reasonably good configuration for the situation at hand. The domain expert, on the other hand, resorts to the system to test heuristics and discover new ones, for the task described above. Expert use involves a manual phase of revising the ruleset, based on performance during previous iterations in the same session. This paper is concerned with a new phase: the design of a neural component to carry out the revision automatically. Such an automated revision considers previous performance of the system and uses it for adaptation and learning better rules. The neural component is based on a particular schema for a symbolic to recurrent-analogue bridge, called NIPPL, and on the reinforcement learning of neural networks for the adaptation.