995 resultados para GOLD CATALYSTS
Resumo:
It is generally thought that catalysts produced by incipient wetness impregnation (IW) are very poor for low temperature CO oxidation, and that it is necessary to use methods such as deposition-precipitation (DP) to make high activity materials. The former is true, indeed such IW catalysts are poor, and we present reactor data, XPS and TEM analysis which show that this is due to the very negative effect of the chloride anion involved in the preparation, which results in poisoning and excessive sintering of the Au particles. With the DP method, the chloride is largely removed during the preparation and so poisoning and sintering are avoided. However, we show here that, contrary to previous considerations, high activity catalysts can indeed be prepared by the incipient wetness method, if care is taken to remove the chloride ion during the process. This is achieved by using the double impregnation method (DIM). In this a double impregnation of chloroauric acid and a base are made to precipitate out gold hydroxide within the pores of the catalyst, followed by limited washing. This results in a much more active catalyst, which is active for CO oxidation at ambient temperature. The results for DIM and DP are compared, and it is proposed that the DIM method may represent an environmentally and economically more favorable route to high activity gold catalyst production. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Synthesis, testing and characterisation of bimetallic gold, Au-M on ceria as catalysts were carried out for low temperature water-gas shift reaction (WGS). Amongst the entire screened catalysts 3 wt% (AU-Pt)/CeO2 displayed the best WGS activity than the monometallic promotors, giving the light-off curve at the lowest temperature in the range 100-300 degrees C. (Au-Pd)/CeO2 also achieved the same activity but at a higher temperature. It was also found that WGS activity was strongly correlated with the surface reducibility which in turn depended on the modified local electronic band structure of promoted ceria. These results clearly suggest that the key role of bimetallic promoter may involve in facilitating the creation of defective reduced surface by exerting its local electronic effect on ceria to form the surface germinal -OH groups in water which act as active sites for enhanced WGS activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report an efficient one-pot conversion of glycerol (GLY) to methyl lactate (MLACT) in methanol in good yields (73 % at 95 % GLY conversion) by using Au nanoparticles on commercially available ultra-stable zeolite-Y (USY) as the catalyst (160 °C, air, 47 bar pressure, 0.25 M GLY, GLY-to-Au mol ratio of 1407, 10 h). The best results were obtained with zeolite USY-600, a catalyst that has both Lewis and Brønsted sites. This methodology provides a direct chemo-catalytic route for the synthesis of MLACT from GLY. MLACT is stable under the reaction conditions, and the Au/USY catalyst was recycled without a decrease in the activity and selectivity. From glycerol to green building blocks and solvents! An efficient, base-free conversion of glycerol to methyl lactate in methanol is reported, achieving good yields (73 % at 95 % glycerol conversion) using Au/ultra-stable zeolite-Y (USY) as the catalyst and environmentally benign oxygen as the oxidant by combining two separate reaction steps efficiently in a one pot procedure. The Au/USY catalyst can be recycled without a decrease in the activity and selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100 degrees C, the evidence from EXAFS and XANES is only 14 consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150 degrees C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Audelta+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (<5%). It is concluded that under water gas shift reaction conditions the active form of gold comprises small metallic gold clusters in intimate contact with the oxide support.
Resumo:
The active site in supported gold catalysts for the carbonylation of methanol has been identified as dimers/trimers of gold which are formed from large gold particles >10 nm in diameter. Methyl iodide was found to be critical for this dispersion process and to maintain the catalyst in the active form. This study also shows that it may be possible to redisperse gold catalysts, in general, after reaction.
Resumo:
Functionalization of alkanes is much sought after for the production of fine and bulk chemicals. In particular, the oxidative activation of alkanes and their conversion to ethene and propene has been studied extensively, owing to the use of these alkenes in polymerization reactions. The greater reactivity of the products in comparison with the reactants has proven a major issue in this reaction as this can result in overoxidation, producing CO and CO2 and, therefore, reducing the alkene yield. Herein, the first application of supported gold catalysts for the direct activation of C2+ aliphatic alkanes with oxygen to form alkenes is demonstrated. This catalyst is particularly notable as it is highly active, selective to propene and ethene, and stable on stream over a 48 h period. Maintaining cationic gold is thought to be critical for the stability and this catalyst design provides the possibility of applying gold-based catalysts over a much wider temperature range than has been reported.
Resumo:
A happy medium: Volumetric adsorption of carbon monoxide at 308 K and UHR-HAADF-STEM, HREM, and computer modeling techniques were compared. Experimental CO/Au ratios at saturation coverage for two supported gold catalysts were shown to fit very well the predictions of a nanostructural model that considers CO adsorption on gold sites with coordination numbers of less than eight.
Resumo:
Although many gold heterogeneous catalysts have been shown to exhibit significant activity and high selectivity for a wide range of reactions in both the liquid and gas phases, they are prone to irreversible deactivation. This is often associated with sintering or loss of the interaction of the gold with the support. Herein, we report on the use of methyl iodide as a method of dispersing gold nanoparticles supported on silica, titania, and alumina supports. In the case of titania- and alumina-based catalysts, the gold was transformed from nanometer particles into small clusters and some atomically dispersed gold. In contrast, although there was a drop in the gold particle size on the silica support following CH3I treatment, the size remained in the submicrometer range. The structural changes were correlated with changes in the selectivity and activity for ethanol dehydration and benzyl alcohol oxidation. From these observations, it is clear that this treatment provides a method by which deactivated gold catalysts can be reactivated via redispersion of the gold.
Resumo:
Mechanochemical synthesis has the potential to provide more sustainable preparative routes to catalysts than the current multistep solvent-based routes. In this review, the mechanochemical synthesis of catalysts is discussed, with emphasis placed on catalysts for environmental, energy and chemical synthesis applications. This includes the formation of mixed-metal oxides as well as the process of dispersing metals onto solid supports. In most cases the process involves no solvent. Encouragingly, there are several examples where the process is advantageous compared with the more normal solvent-based methods. This can be because of process cost or simplicity, or, notably, where it provides more active/selective catalysts than those made by conventional wet chemical methods. The need for greater, and more systematic, exploration of this currently unconventional approach to catalyst synthesis is highlighted.
Resumo:
Methods to control the dispersion of gold in supported heterogeneous catalysts are very valuable due to the strong nanoparticle size dependence on their activity and selectivity towards many reactions. Additionally, the ability to disperse large, inactive gold nanoparticles to smaller nanoparticles provides an opportunity to reactivate, stabilise and increase the lifetime of gold catalysts making them more practical for industrial applications. Previously it has been demonstrated that the use of gas phase iodomethane (J. Am. Chem. Soc., 2009, 131, 6973; Angew. Chem., Int. Ed., 2011, 50, 8912) was able to re-disperse gold from >20 nm particles to dimers and trimers. In the current work, we show that this technique can be applied using less hazardous halohydrocarbons treatments, both in the gas phase and the liquid phase. The ability of these individual halohydrocarbons to re-disperse gold as well as the extent to which leaching occurs is assessed.
Resumo:
The ability to reactivate, stabilize and increase the lifetime of gold catalysts by dispersing large, inactive gold nanoparticles to smaller nanoparticles provides an opportunity to make gold catalysts more practical for industrial applications. Previously it has been demonstrated that mild treatment with iodomethane (CH3I) (J. Am. Chem. Soc., 2009, 131, 6973; Angew. Chem. Int. Ed., 2011, 50, 8912) was able to re-disperse gold on carbon and metal oxide supports. In the current work, we show that this technique can be applied to re-disperse gold on a ‘mixed’ metal oxide, namely a mechanical mixture of ceria, zirconia and titania. Characterization was conducted to gage the impact of the iodomethane (CH3I) treatment on a previously sintered catalyst.
Resumo:
Highly efficient In2O3-Co3O4 catalysts were prepared for ultralow-temperature CO oxidation by simultaneously tuning the CO adsorption strength and oxygen activation over a Co3O4 surface, which could completely convert CO to CO2 at temperatures as low as -105 degrees C compared to -40 degrees C over pure Co3O4, with enhanced stability.