940 resultados para GNSS signals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next generation Global Navigation Satellite System (GNSS) receivers will operate in multiple navigation bands. An efficient way to achieve this with lower power and cost is to employ BandPass Sampling (BPS); nevertheless, the sampling operation injects large amounts of jitter noise, which degrades the performance of the receiver. Continuous–Time (CT) Delta–Sigma (ΔΣ) modulators are capable of suppressing this noise but the impact of clock jitter at the output of the Digital– to–Analog Converter (DAC) in the feedback path of the modulator should be taken into account. This paper presents an analytical approach for describing clock jitter in GNSS receivers when a CT–ΔΣ modulator is utilized for Analog–to–Digital Conversion (ADC). The validity of the presented approach is verified through time–domain simulations using a behavioural model of the fourth–order CT–ΔΣ modulator with 1–bit NRZ DAC feedback pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a low complexity technique to generate amplitude correlated time-series with Nakagami-m distribution and phase correlated Gaussian-distributed time-series, which is useful in the simulation of ionospheric scintillation effects during the transmission of GNSS signals. The method requires only the knowledge of parameters S4 (scintillation index) and σΦ (phase standard deviation) besides the definition of models for the amplitude and phase power spectra. The Zhang algorithm is used to produce Nakagami-distributed signals from a set of Gaussian autoregressive processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an overview of technical solutions for regional area precise GNSS positioning services such as in Queensland. The research focuses on the technical and business issues that currently constrain GPS-based local area Real Time Kinematic (RTK) precise positioning services so as to operate in future across larger regional areas, and therefore support services in agriculture, mining, utilities, surveying, construction, and others. The paper first outlines an overall technical framework that has been proposed to transition the current RTK services to future larger scale coverage. The framework enables mixed use of different reference GNSS receiver types, dual- or triple-frequency, single or multiple systems, to provide RTK correction services to users equipped with any type of GNSS receivers. Next, data processing algorithms appropriate for triple-frequency GNSS signals are reviewed and some key performance benefits of using triple carrier signals for reliable RTK positioning over long distances are demonstrated. A server-based RTK software platform is being developed to allow for user positioning computations at server nodes instead of on the user's device. An optimal deployment scheme for reference stations across a larger-scale network has been suggested, given restrictions such as inter-station distances, candidates for reference locations, and operational modes. For instance, inter-station distances between triple-frequency receivers can be extended to 150km, which doubles the distance between dual-frequency receivers in the existing RTK network designs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a secure framework for tracking applications that use the Galileo signal authentication services. First a number of limitations that affect the trust of critical tracking applications, even in presence of authenticated GNSS signals, are detailed. Requirements for secure tracking are then introduced; detailing how the integrity characteristics of the Galileo authentication could enhance the security of active tracking applications. This paper concludes with a discussion of our existing tracking technology using a Siemens TC45 GSM/GPRS module and future development utilizing our previously proposed trusted GNSS receiver.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the design and implementation of a dual–tracking Radio Frequency (RF) front–end for a multi–constellation Global Navigation Satellite Systems (GNSS) receiver. The RF frond–end is based on the direct RF conversion architecture, which employs sub–Nyquist sampling (also known as subsampling) at RF. The dual–tracking RF front–end is composed of a few RF components that are duplicated to form the two RF channels. Employing a dual–channel Analogue–to–Digital Converter (ADC) enables synchronisation of the RF channels and minimises the errors resulting from the differences in the satellite clocks and the propagation delay between the two RF channels. The digitised GNSS signals are processed by two separate acquisition and tracking engines that are driven by the front–end’s master clock. This setup provides two synchronised receivers that are integrated onto one piece of hardware. The hardware is intended to be used for research applications such as multipath mitigation, scintillation assessment, and advanced satellite clock and spatial frame transformation modelling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper demonstrates nonlinear phase filtering effects on GNSS receiver accuracy. Using a nonlinear phase filter in a GNSS receiver can change the pseudorange estimation up to 250 metres which introduces an error in the overall positioning calculation. Paper shows the study of the nonlinear phase filtering effects on the pseudorange estimation and demonstrates how it can be compensated with minimal hardware usage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliability of carrier phase ambiguity resolution (AR) of an integer least-squares (ILS) problem depends on ambiguity success rate (ASR), which in practice can be well approximated by the success probability of integer bootstrapping solutions. With the current GPS constellation, sufficiently high ASR of geometry-based model can only be achievable at certain percentage of time. As a result, high reliability of AR cannot be assured by the single constellation. In the event of dual constellations system (DCS), for example, GPS and Beidou, which provide more satellites in view, users can expect significant performance benefits such as AR reliability and high precision positioning solutions. Simply using all the satellites in view for AR and positioning is a straightforward solution, but does not necessarily lead to high reliability as it is hoped. The paper presents an alternative approach that selects a subset of the visible satellites to achieve a higher reliability performance of the AR solutions in a multi-GNSS environment, instead of using all the satellites. Traditionally, satellite selection algorithms are mostly based on the position dilution of precision (PDOP) in order to meet accuracy requirements. In this contribution, some reliability criteria are introduced for GNSS satellite selection, and a novel satellite selection algorithm for reliable ambiguity resolution (SARA) is developed. The SARA algorithm allows receivers to select a subset of satellites for achieving high ASR such as above 0.99. Numerical results from a simulated dual constellation cases show that with the SARA procedure, the percentages of ASR values in excess of 0.99 and the percentages of ratio-test values passing the threshold 3 are both higher than those directly using all satellites in view, particularly in the case of dual-constellation, the percentages of ASRs (>0.99) and ratio-test values (>3) could be as high as 98.0 and 98.5 % respectively, compared to 18.1 and 25.0 % without satellite selection process. It is also worth noting that the implementation of SARA is simple and the computation time is low, which can be applied in most real-time data processing applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of postdetection integration (PDI) techniques for the detection of Global Navigation Satellite Systems (GNSS) signals in the presence of uncertainties in frequency offsets, noise variance, and unknown data-bits is studied. It is shown that the conventional PDI techniques are generally not robust to uncertainty in the data-bits and/or the noise variance. Two new modified PDI techniques are proposed, and they are shown to be robust to these uncertainties. The receiver operating characteristics (ROC) and sample complexity performance of the PDI techniques in the presence of model uncertainties are analytically derived. It is shown that the proposed methods significantly outperform existing methods, and hence they could become increasingly important as the GNSS receivers attempt to push the envelope on the minimum signal-to-noise ratio (SNR) for reliable detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data assimilation algorithms are a crucial part of operational systems in numerical weather prediction, hydrology and climate science, but are also important for dynamical reconstruction in medical applications and quality control for manufacturing processes. Usually, a variety of diverse measurement data are employed to determine the state of the atmosphere or to a wider system including land and oceans. Modern data assimilation systems use more and more remote sensing data, in particular radiances measured by satellites, radar data and integrated water vapor measurements via GPS/GNSS signals. The inversion of some of these measurements are ill-posed in the classical sense, i.e. the inverse of the operator H which maps the state onto the data is unbounded. In this case, the use of such data can lead to significant instabilities of data assimilation algorithms. The goal of this work is to provide a rigorous mathematical analysis of the instability of well-known data assimilation methods. Here, we will restrict our attention to particular linear systems, in which the instability can be explicitly analyzed. We investigate the three-dimensional variational assimilation and four-dimensional variational assimilation. A theory for the instability is developed using the classical theory of ill-posed problems in a Banach space framework. Further, we demonstrate by numerical examples that instabilities can and will occur, including an example from dynamic magnetic tomography.