992 resultados para Fungus-coat
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.
Resumo:
An experiment was conducted to study the effects of liming and drying method on Ca nutrition, fungus infection and aflatoxin production potential on peanut (Arachis hypogea) grains. Peanut cv. Botutatu was grown in the absence or presence of liming to raise the base saturation of the soil from 20 to 56%. Calcium contents of the soil were increased from 5.5 to 14.6 mmol((c))kg-1 and pH from 4.2 to 4.9. After harvest, plants and pods were dried in (1) shade, (2) field down to 100 g water kg-1 (3) field down to 250 g water kg-1 and transferred to a forced-air oven at 30°C, (4) field down to 360 g water kg-1 and transferred to a forced-air oven at 30°C. Calcium contents were analyzed in the grains, pericarps and seed coats. The incidence of Aspergillus spp., Penicillium spp., Rhizopus spp. and potential aflatoxin production in vitro were evaluated, as well as the seed coat thickness. The seed coat was thicker when peanut was grown in the presence of lime, leading to a decrease in seed infection by Aspergillus spp. and Penicillium spp. When plants were dried in shade, the growth of aflatoxinogenic fungi was independent of liming. However, in plants dried in the field or field + oven, the development of these fungi was decreased and even suppressed when the Ca content of the seed coat was increased from 2.2 to 5.5 g kg-1.
Resumo:
The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.
Resumo:
An approach to reduce the contamination of water sourceswith pesticides is the use of biopurificaction systems. The active core of these systems is the biomixture. The composition of biomixtures depends on the availability of local agro-industrial wastes and design should be adapted to every region. In Portugal, cork processing is generally regarded as environmentally friendly and would be interesting to find applications for its industry residues. In this work the potential use of different substrates in biomixtures, as cork (CBX); cork and straw, coat pine and LECA (Light Expanded Clay Aggregates), was tested on the degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation strategies using the white-rot fungus Lentinula edodes inoculated into the CBX, was also assessed. The results obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. Furthermore, higher degradation of all the pesticides was achieved by use of bioaugmented biomixtures. Indeed, the biomixtures inoculated with L. edodes EL1were able to mineralize the selected xenobiotics, revelling that these white-rot fungi might be a suitable fungus for being used as inoculum sources in on-farm sustainable biopurification system, in order to increase its degradation efficiency. After 120 days, maximum degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin, of bioaugmented CBX, was 89.9%, 75.0%, 65.0% and 99.4%, respectively. The dominant metabolic route of terbuthylazine in biomixtures inoculated with L. edodes EL1 proceeded mainly via hydroxylation, towards production of terbuthylazine-hydroxy-2 metabolite. Finally, sorption process to cork by pesticides proved to be a reversible process,working cork as a mitigating factor reducing the toxicity to microorganisms in the biomixture, especially in the early stages.
Resumo:
In vitro culture of the mutualistic fungus of leaf-cutting ants is troublesome due to its low growth rate, which leads to storage problems and contaminants accumulation. This paper aims at comparing the radial growth rate of the mutualistic fungus of Atta sexdens rubropilosa Forel in two different culture media (Pagnocca B and MEA LP). Although total MEA LP radial growth was greater all along the bioassay, no significant difference was detected between growth efficiencies of the two media. Previous evidences of low growth rate for this fungus were confirmed. Since these data cannot point greater efficiency of one culture medium over the other, MEA LP medium is indicated for in vitro studies with this mutualistic fungus due its simpler composition and translucent color, making the analysis easier.
Resumo:
The fungus-farming ant genus Mycetagroicus Brandão & Mayhé-Nunes was proposed based on three species from the Brazilian "Cerrado": M. cerradensis, M. triangularis and M. urbanus. Here we describe a new species of Attini ant of the genus Mycetagroicus, M. inflatus n. sp., based on two workers collected in eastern Pará State, Brazil. A new key for species identification, comments on differences among species and new geographical distribution data are furnished.
Resumo:
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility ( het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer ( HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated ""gene dumps'' and, perhaps, simultaneously, as "" gene factories''.
Resumo:
Some herbicides are suspected of promoting teratogenic, carcinogenic and mutagenic events. Detection of induced mitotic crossing-over has proven to be an indirect way of testing the carcinogenic properties of suspicious substances, because mitotic crossing-over is involved in the multistep process of carcinogenesis. We examined mitotic crossing-over induced by two commercial herbicides (diuron and trifluralin) in diploid strains of Aspergillus nidulans based on the homozygotization index. Low doses (2.5 mu g/mL) of diuron were sufficient to increase the mean homozygotization index in 2.1 and 11.3 times for UT448//UT196 and Dp II-I//UT196, respectively, whereas the same dose of trifluralin increased this mean only 1.2 (UT448//UT196) and 3.5 (Dp II-I//UT196) times, respectively. The lower homozygotization index value found for trifluralin could be due to its interference with mitotic crossing-over in eukaryotic cells. We concluded that the diploid Dp II-I//UT196 of A. nidulans is more sensitive to organic compounds than UT448//UT196; these compounds cause recombinational events at a greater frequency in the latter diploid. This system holds promise as an initial test for carcino-genicity of organic compounds, including herbicides.
Resumo:
Background: Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome. Results: During nucleotide sequencing of cDNA libraries constructed using RNA isolated from B. emersonii cells submitted to heat shock and cadmium stress, a large number of ESTs with retained introns was observed. Among the 6,350 ESTs obtained through sequencing of stress cDNA libraries, 181 ESTs presented putative introns (2.9%), while sequencing of cDNA libraries from unstressed B. emersonii cells revealed only 0.2% of ESTs containing introns. These data indicate an enrichment of ESTs with introns in B. emersonii stress cDNA libraries. Among the 85 genes corresponding to the ESTs that retained introns, 19 showed more than one intron and three showed three introns, with intron length ranging from 55 to 333 nucleotides. Canonical splicing junctions were observed in most of these introns, junction sequences being very similar to those found in introns from genes previously characterized in B. emersonii, suggesting that inhibition of splicing during stress is apparently a random process. Confirming our observations, analyses of gpx3 and hsp70 mRNAs by Northern blot and S1 protection assays revealed a strong inhibition of intron splicing in cells submitted to cadmium stress. Conclusion: In conclusion, data indicate that environmental stresses, particularly cadmium treatment, inhibit intron processing in B. emersonii, revealing a new adaptive response to cellular exposure to this heavy metal.
Resumo:
We previously demonstrated that conidia from Aspergillus fumigatus incubated with menadione and paraquat increases activity and expression of cyanide-insensitive alternative oxidase (AOX). Here, we employed the RNA silencing technique in A. fumigatus using the vector pALB1/aoxAf in order to down-regulate the aox gene. Positive transformants for aox gene silencing of A. fumigatus were more susceptible both to an imposed in vitro oxidative stress condition and to macrophages killing, suggesting that AOX is required for the A. fumigatus pathogenicity, mainly for the survival of the fungus conidia during host infection and resistance to reactive oxygen species generated by macrophages.
Resumo:
Differences between the respiratory chain of the fungus Paracoccidioides brasiliensis and its mammalian host are reported. Respiration, membrane potential, and oxidative phosphorylation in mitochondria from P. brasiliensis spheroplasts were evaluated in situ, and the presence of a complete (Complex I-V) functional respiratory chain was demonstrated. In succinate-energized mitochondria, ADP induced a transition from resting to phosphorylating respiration. The presence of an alternative NADH-ubiquinone oxidoreductase was indicated by: (i) the ability to oxidize exogenous NADH and (ii) the lack of sensitivity to rotenone and presence of sensitivity to flavone. Malate/NAD(+)-supported respiration suggested the presence of either a mitochondrial pyridine transporter or a glyoxylate pathway contributing to NADH and/or succinate production. Partial sensitivity of NADH/succinate-supported respiration to antimycin A and cyanide, as well as sensitivity to benzohydroxamic acids, suggested the presence of an alternative oxidase in the yeast form of the fungus. An increase in activity and gene expression of the alternative NADH dehydrogenase throughout the yeast`s exponential growth phase was observed. This increase was coupled with a decrease in Complex I activity and gene expression of its subunit 6. These results support the existence of alternative respiratory chain pathways in addition to Complex I, as well as the utilization of NADH-linked substrates by P. brasiliensis. These specific components of the respiratory chain could be useful for further research and development of pharmacological agents against the fungus.
Resumo:
Protease production was carried out in solid state fermentation. The enzyme was purified through precipitation with ethanol at 72% followed by chromatographies in columns of Sephadex G75 and Sephacryl S100. It was purified 80-fold and exhibited recovery of total activity of 0.4%. SDS-PAGE analysis indicated an estimated molecular mass of 24.5 kDa and the N-terminal sequence of the first 22 residues was APYSGYQCSMQLCLTCALMNCA. Purified protease was only inhibited by EDTA (96.7%) and stimulated by Fe(2+) revealing to be a metalloprotease activated by iron. Optimum pH was 5.5, optimum temperature was 75 degrees C, and it was thermostable at 65 degrees C for 1 h maintaining more than 70% of original activity. Through enzyme kinetic studies, protease better hydrolyzed casein than azocasein. The screening of fluorescence resonance energy transfer (FRET) peptide series derived from Abz-KLXSSKQ-EDDnp revealed that the enzyme exhibited preference for Arg in P(1) (k(cat)/K(m) = 30.1 mM(-1) s(-1)).
Resumo:
In this study the effects of spray-drying conditions on the retention of enzyme activity of lipase produced by the endophytic fungus Cercospora kikuchii have been investigated. Drying runs were carried out in a bench-top spray dryer with a concurrent flow regime. The influence of the variables inlet temperature of drying gas, Tgi (86.4 to 153.6 degrees C); mass flow rate of the enzymatic extract fed to the dryer, Ws (2.63 to 9.36g/min); and concentration of the drying adjuvant added to the extract, ADJ (1.95 to 12.05%), on the spray-drying performance and on product quality was evaluated through experimental planning and regression analysis. The use of maltodextrin, as a stabilizing agent, slightly improved the retention of enzyme activity compared to -cyclodextrin. Statistical optimization of the experimental results allowed the determination of the processing conditions that maximized the retention of the enzymatic activity (RAE), namely, concentration of drying adjuvants of 12.05%, inlet temperature of the drying gas of 153.6 degrees C, and flow rate of the enzymatic extract fed to the dryer of 9.36g/min for the both drying adjuvants investigated.
Resumo:
Metarhizium spp. is an important worldwide group of entomopathogenic fungi used as an interesting alternative to chemical insecticides in programs of agricultural pest and disease vector control. Metarhizium conidia are important in fungal propagation and also are responsible for host infection. Despite their importance, several aspects of conidial biology, including their proteome, are still unknown. We have established conidial and mycelial proteome reference maps for Metarhizium acridum using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). In all, 1130 +/- 102 and 1200 +/- 97 protein spots were detected in ungerminated conidia and fast-growing mycelia, respectively. Comparison of the two protein-expression profiles reveled that only 35 % of the protein spots were common to both developmental stages. Out of 94 2-DE protein spots (65 from conidia, 25 from mycelia and two common to both) analyzed using mass spectrometry, seven proteins from conidia, 15 from mycelia and one common to both stages were identified. The identified protein spots exclusive to conidia contained sequences similar to known fungal stress-protector proteins (such as heat shock proteins (HSP) and 6-phosphogluconate dehydrogenase) plus the fungal allergen Alt a 7, actin and the enzyme cobalamin-independent methionine synthase. The identified protein spots exclusive to mycelia included proteins involved in several cell housekeeping biological processes. Three proteins (HSP 90, 6-phosphogluconate dehydrogenase and allergen Alt a 7) were present in spots in conidial and mycelial gels, but they differed in their locations on the two gels. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.