998 resultados para Functional Assay
Resumo:
Although p53-gene mutations occur with significant frequency in diffuse low-grade and high-grade astrocytomas, and are postulated to play an important role in tumorigenesis in these cases, the role of the p53 gene in pilocytic astrocytomas remains unclear. Published data using DNA-based assays for p53-gene analysis in these tumors have shown contradictory results in mutation frequency (0-14%). It is not known whether these heterogeneous results stem from the biological diversity of this tumor group or from technical problems. To re-evaluate p53-gene status in pilocytic tumors, we analyzed 18 tumors chosen to represent the clinical and biological heterogeneity of this tumor type with respect to anatomical location, patient age, gender, ethnic origin (Caucasian or Japanese) and the concomitant occurrence of neurofibromatosis type 1 (NF1). All primary tumors were histologically diagnosed as pilocytic astrocytoma (WHO grade I), except for one anaplastic pilocytic astrocytoma (WHO grade III) which developed in an NF1 patient and recurred as glioblastoma multiforme (WHO grade IV). p53 mutations were detected using an assay in yeast which tests the transcriptional activity of p53 proteins synthesized from tumor mRNA-derived p53-cDNA templates. None of 18 tumors, including 3 NF1-related tumors, showed p53-gene mutations between and including exons 4 and 11. We conclude that p53-gene mutations are extremely rare findings in pilocytic astrocytomas, and are absent even in those exceptional cases in which malignant progression of such tumors has occurred.
Resumo:
Missense mutations within the central DNA binding region of p53 are the most prevalent mutations found in human cancer. Numerous studies indicate that ‘hot-spot’ p53 mutants (which comprise ∼30% of human p53 gene mutations) are largely devoid of transcriptional activity. However, a growing body of evidence indicates that some non-hot-spot p53 mutants retain some degree of transcriptional activity in vivo, particularly against strong p53 binding sites. We have modified a previously described yeast-based p53 functional assay to readily identify such partial loss of function p53 mutants. We demonstrate the utility of this modified p53 functional assay using a diverse panel of p53 mutants.
Resumo:
Mutations in the p53 gene are implicated in the pathogenesis of half of all human tumors. We have developed a simple functional assay for p53 mutation in which human p53 expressed in Saccharomyces cerevisiae activates transcription of the ADE2 gene. Consequently, yeast colonies containing wild-type p53 are white and colonies containing mutant p53 are red. Since this assay tests the critical biological function of p53, it can distinguish inactivating mutations from functionally silent mutations. By combining this approach with gap repair techniques in which unpurified p53 reverse transcription-PCR products are cloned by homologous recombination in vivo it is possible to screen large numbers of samples and multiple clones per sample for biologically important mutations. This means that mutations can be detected in tumor specimens contaminated with large amounts of normal tissue. In addition, the assay detects temperature-sensitive mutants, which give pink colonies. We show here that this form of p53 functional assay can be used rapidly to detect germline mutations in blood samples, somatic mutations in tumors, and mutations in cell lines.
Resumo:
Neuroblastoma (NB) is the most common extracranial malignant tumor in young children and arises at any site of the sympathetic nervous system. The disease exhibits a remarkable phenotypic diversity ranging from spontaneous regression to fatal disease. Poor outcome results from a rapidly progressive, metastatic and drug-resistant disease. Recent studies have suggested that solid tumors may arise from a minor population of cancer stem cells (CSCs) with stem cell markers and typical properties such as self-renewal ability, asymmetric division and drug resistance. In this model, CSCs possess the exclusive ability to initiate and maintain the tumor, and to produce distant metastases. Tumor cell subpopulations with stem-like phenotypes have indeed been identified in several cancer including leukemia, breast, brain and colon cancers. CSC hypothesis still needs to be validated in the other cancers including NB.NB originates from neural crest-derived malignant sympatho-adrenal cells. We have identified rare cells that express markers in conformity with neural crest stem cells and their derived lineages within primary NB tissue and cell lines, leading us to postulate the existence of CSCs in NB tumors.In the absence of specific markers to isolate CSCs, we adapted to NB tumor cells the sphere functional assay, based on the ability of stem cells to grow as spheres in non-adherent conditions. By serial passages of spheres from bone marrow NB metastases, a subset of cells was gradually selected and its specific gene expression profile identified by micro-array time-course analysis. The differentially expressed genes in spheres are enriched in genes implicated in development including CD133, ABC-transporters, WNT and NOTCH genes, identified in others solid cancers as CSCs markers, and other new markers, all referred by us as the Neurosphere Expression Profile (NEP). We confirmed the presence of a cell subpopulation expressing a combination of the NEP markers within a few primary NB samples.The tumorigenic potential of NB spheres was assayed by in vivo tumor growth analyses using orthotopic (adrenal glands) implantations of tumor cells into immune-compromised mice. Tumors derived from the sphere cells were significantly more frequent and were detected earlier compared to whole tumor cells. However, NB cells expressing the neurosphere-associated genes and isolated from the bulk tumors did not recapitulate the CSC-like phenotype in the orthotopic model. In addition, the NB sphere cells lost their higher tumorigenic potential when implanted in a subcutaneous heterotopic in vivo model.These results highlighted the complex behavior of CSC functions and led us to consider the stem-like NB cells as a dynamic and heterogeneous cell population influenced by microenvironment signals.Our approach identified for the first time candidate genes that may be associated with NB self-renewal and tumorigenicity and therefore would establish specific functional targets for more effective therapies in aggressive NB.
Resumo:
Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.
Resumo:
The Wilms' tumor gene, WT1, encodes a zinc finger transcription factor which functions as a tumor suppressor. Defects in the WT1 gene can result in the development of nephroblastoma. WT1 is expressed during development, primarily in the metanephric kidney, the mesothelial lining of the abdomen and thorax, and the developing gonads. WT1 expression is tightly regulated and is essential for renal development. The WT1 gene encodes a protein with a proline-rich N-terminus which functions as a transcriptional repressor and C-terminus contains 4 zinc fingers that mediate DNA binding. WT1 represses transcription from a number of growth factors and growth factor receptors. WT1 mRNA undergoes alternative splicing at two sites, resulting in 4 mRNA species and polypeptide products. Exon 5, encoding 17 amino acids is alternatively spliced, and is located between the transcriptional repression domain and the DNA binding domain. The second alternative splice is the terminal 9 nucleotides of zinc finger 3, encoding the tripeptide Lys-Thr-Ser (KTS). The presence or absence of KTS within the zinc fingers of WT1 alters DNA binding.^ I have investigated transcriptional regulation of WT1, characterizing two means of repressing WT1 transcription. I have cloned a transcriptional silencer of the WT1 promoter which is located in the third intron of the WT1 gene. The silencer is 460 bp in length and contains an Alu repeat. The silencer functions in cells of non-renal origin.^ I have found that WT1 protein can autoregulate the WT1 promoter. Using the autoregulation of the WT1 promoter as a functional assay, I have defined differential consensus DNA binding motifs of WT1 isoforms lacking and containing the KTS tripeptide insertion. With these refined consensus DNA binding motifs, I have identified two additional targets of WT1 transcriptional repression, the proto-oncogenes bcl-2 and c-myc.^ I have investigated the ability of the alternatively spliced exon 5 to influence cell growth. In cell proliferation assays, isoforms of WT1 lacking exon 5 repress cell growth. WT1 isoforms containing exon 5 fail to repress cell growth to the same extent, but alter the morphology of the cells. These experiments demonstrate that the alternative splice isoforms of WT1 have differential effects on the function of WT1. These findings suggest a role for the alternative splicing of WT1 in metanephric development. ^
Resumo:
An LC/MS analysis with diagnostic screening for the detection of peptides with posttranslational modifications revealed the presence of novel sulfated peptides within the -conotoxin molecular mass range in Conus anemone crude venom. A functional assay of the extract showed activity at several neuronal nicotinic acetylcholine receptors (nAChRs). Three sulfated alpha-conotoxins (AnIA, AnIB, and AnIC) were identified by LC/MS and assay-directed fractionation and sequenced after purification. The most active of these, alpha-AnIB, was further characterized and used to investigate the influence of posttranslational modifications on affinity. Synthetic AnIB exhibited subnanomolar potency at the rat alpha3/beta2 nAChR (IC50 0.3 nM) and was 200-fold less active on the rat alpha7 nAChR (IC50 76 nM). The unsulfated peptide [Tyr(16)]AnIB showed a 2-fold and 10-fold decrease in activities at alpha3beta2 (IC50 0.6 nM) and alpha7(IC50 836 nM) nAChR, respectively. Likewise, removal of the C-terminal amide had a greater influence on potency at the alpha7 (IC50 367 nM) than at the alpha3beta2 nAChR (IC50 0.5 nM). Stepwise removal of two N-terminal glycine residues revealed that these residues affect the binding kinetics of the peptide. Comparison with similar 4/7-alpha-conotoxin sequences suggests that residue 11 (alanine or glycine) and residue 14 (glutamine) constitute important determinants for alpha3beta2 selectivity, whereas the C-terminal amidation and sulfation at tyrosine-16 favor alpha7 affinity.
Resumo:
PURPOSE: This study sought to establish whether functional analysis of the ATM-p53-p21 pathway adds to the information provided by currently available prognostic factors in patients with chronic lymphocytic leukemia (CLL) requiring frontline chemotherapy. EXPERIMENTAL DESIGN: Cryopreserved blood mononuclear cells from 278 patients entering the LRF CLL4 trial comparing chlorambucil, fludarabine, and fludarabine plus cyclophosphamide were analyzed for ATM-p53-p21 pathway defects using an ex vivo functional assay that uses ionizing radiation to activate ATM and flow cytometry to measure upregulation of p53 and p21 proteins. Clinical endpoints were compared between groups of patients defined by their pathway status. RESULTS: ATM-p53-p21 pathway defects of four different types (A, B, C, and D) were identified in 194 of 278 (70%) samples. The type A defect (high constitutive p53 expression combined with impaired p21 upregulation) and the type C defect (impaired p21 upregulation despite an intact p53 response) were each associated with short progression-free survival. The type A defect was associated with chemoresistance, whereas the type C defect was associated with early relapse. As expected, the type A defect was strongly associated with TP53 deletion/mutation. In contrast, the type C defect was not associated with any of the other prognostic factors examined, including TP53/ATM deletion, TP53 mutation, and IGHV mutational status. Detection of the type C defect added to the prognostic information provided by TP53/ATM deletion, TP53 mutation, and IGHV status. CONCLUSION: Our findings implicate blockade of the ATM-p53-p21 pathway at the level of p21 as a hitherto unrecognized determinant of early disease recurrence following successful cytoreduction.
Resumo:
omega -Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new omega -conotoxins (CVIA-D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionation and gene cloning. Compared with other omega -conotoxins, CVID has a novel loop 4 sequence and the highest selectivity for N-type over P/Q-type calcium channels in radioligand binding assays. CVIA-D also inhibited contractions of electrically stimulated rat vas deferens. In electrophysiological studies, omega -conotoxins CVID and MVIIA had similar potencies to inhibit current through central (alpha (1B-d)) and peripheral (alpha (1B-b)) splice variants of the rat N-type calcium channels when coexpressed with rat beta (3) in Xenopus oocytes, However, the potency of CVID and MVIIA increased when alpha (1B-d) and alpha (1B-b) were expressed in the absence of rat beta (3), an effect most pronounced for CVID at alpha (1B-d) (up to 540-fold) and least pronounced for MVIIA at alpha (1B-d) (3-fold). The novel selectivity of CVID may have therapeutic implications. H-1 NMR studies reveal that CMD possesses a combination of unique structural features, including two hydrogen bonds that stabilize loop 2 and place loop 2 proximal to loop 4, creating a globular surface that is rigid and well defined.
Resumo:
La diarrhée congénitale de sodium est une maladie génétique très rare. Les enfants touchés par cette maladie présentent une diarrhée aqueuse sévère accompagnée d'une perte fécale de sodium et bicarbonates causant une déshydratation hyponatrémique et une acidose métabolique. Des analyses génétiques ont identifié des mutations du gène Spint2 comme cause de cette maladie. Le gène Spint2 code pour un inhibiteur de sérine protéase transmembranaire exprimé dans divers épithéliums tels que ceux du tube digestif ou des tubules rénaux. Le rôle physiologique de Spint2 n'est pas connu. De plus, aucun partenaire physiologique de Spint2 n'a été identifié et le mécanisme d'inhibition par Spint2 nous est peu connu. Le but de ce projet est donc d'obtenir de plus amples informations concernant la fonction et le rôle de Spint2 dans le contexte de la diarrhée congénitale de sodium, cela afin de mieux comprendre la physiopathologie des diarrhées et peut-être d'identifier de nouvelles cibles thérapeutiques. Un test fonctionnel dans les ovocytes de Xenopus a identifié les sérine protéases transmembranaires CAPI et Tmprssl3 comme potentielles cibles de Spint2 dans la mesure où ces deux protéases n'étaient plus bloquées par le mutant de Spint2 Y163C qui est associé avec la diarrhée congénitale de sodium. Des expériences fonctionnelles et biochimiques plus poussées suggèrent que l'inhibition de Tmprssl3 par Spint2 est le résultat d'une interaction complexe entre ces deux protéines. Les effets des sérine protéases transmembranaires sur l'échangeur Na+-H+ NHE3, qui pourrait être impliqué dans la pathogenèse de la diarrhée congénitale de sodium ont aussi été testés. Un clivage spécifique de NHE3 par la sérine protéase transmembranaire Tmprss3 a été observé lors d'expériences biochimiques. Malheureusement, la pertinence physiologique de ces résultats n'a pas pu être évaluée in vivo, étant donné que le modèle de souris knockout conditionnel de Spint2 que nous avons créé ne montrait une réduction de l'expression de Spint2 que de 50% et aucun phénotype. En résumé, ce travail met en évidence deux nouveaux partenaires possibles de Spint2, ainsi qu'une potentielle régulation de NHE3 par des sérine protéases transmembranaires. Des expériences supplémentaires faites dans des modèles animaux et lignées cellulaires sont requises pour évaluer la pertinence physiologique de ces données et pour obtenir de plus amples informations au sujet de Spint2 et de la diarrhée congénitale de sodium. - The congenital sodium diarrhea is a very rare genetic disease. Children affected by this condition suffer from a severe diarrhea characterized by watery stools with a high fecal loss of sodium and bicarbonates, resulting in hyponatremic dehydration and metabolic acidosis. Genetic analyses have identified mutations in the Spint2 gene as a cause of this disease. The spint2 gene encodes a transmembrane serine protease inhibitor expressed in various epithelial tissues including the gastro-intestinal tract and renal tubules. The physiological role of Spint2 is completely unknown. In addition, physiological partners of Spint2 are still to be identified and the mechanism of inhibition by Spint2 remains elusive. Therefore, the aim of this project was to get insights about the function and the role of Spint2 in the context of the congenital sodium diarrhea in order to better understand the pathophysiology of diarrheas and maybe identify new therapeutic targets. A functional assay in Xenopus oocytes identified the membrane-bound serine proteases CAPI and Tmprssl3 as potential targets of Spint2 because both proteases were no longer inhibited by the mutant Spint2 Y163C that has been associated with the congenital diarrhea. Further functional and biochemical experiments suggested that the inhibition of Tmprssl3 by Spint2 occurs though a complex interaction between both proteins. The effects of membrane-bound serine proteases on the Na+-H+ exchanger NHE3, which has been proposed to be involved in the pathogenesis of the congenital sodium diarrhea, were also tested. A specific cleavage of NHE3 by the membrane-bound serine protease Tmprss3 was observed in biochemical experiments. Unfortunately, the physiological relevance of these results could not be assessed in vivo since the conditional Spint2 knockout mouse model that we generated showed a reduction in Spint2 expression of only 50% and displayed no phenotype. Briefly, this work provides two new potential partners of Spint2 and emphasizes a putative regulation of NHE3 by membrane-bound serine proteases. Further work done in animal models and cell lines is required to assess the physiological relevance of these results and to obtain additional data about Spint2 and the congenital diarrhea.
Resumo:
Head and neck cancer patients are at high risk for developing second primary tumors. This is known as field cancerization of the aero-digestive tract. In a previous study, we showed that patients with multiple primary tumors were more likely to have p53 mutations in histologically normal mucosae than patients presenting with an isolated tumor. Based on this observation, we postulated that p53 mutations in normal tissue samples of patients bearing a single primary tumor could have a clinical value as a biomarker for the risk of developing second primary tumors. Thirty-five patients presenting with a single primary tumor were followed-up for a median of 51 months (range 1 month to 10.9 years) after biopsies of histologically normal squamous cell mucosa had been analyzed for p53 mutations with a yeast functional assay at the time of the primary tumor. During this follow-up, recurrences and non-sterilization of the primary tumor, occurrence of lymph node metastases, and of second primary tumors were evaluated. Sixteen (45.7%) patients were found to have p53 mutations in their normal squamous cell mucosa, and 19 (54.3%) patients showed no mutation. No relationship was found between p53 mutations and the occurrence of evaluated events during follow-up. Notably, the rate of second primary tumors was not associated with p53 mutations in the normal squamous mucosa. The correlation between p53 mutations in histologically normal mucosae and the incidence of second primary tumors is generally low. The benefit of analyzing p53 mutations in samples of normal squamous cell mucosa in every patient with a primary tumor of the head and neck is doubtful.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.
Resumo:
Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/ CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV- 1 vaccine.
Resumo:
The three alpha2-adrenoceptor (alpha2-AR) subtypes belong to the G protein-coupled receptor superfamily and represent potential drug targets. These receptors have many vital physiological functions, but their actions are complex and often oppose each other. Current research is therefore driven towards discovering drugs that selectively interact with a specific subtype. Cell model systems can be used to evaluate a chemical compound's activity in complex biological systems. The aim of this thesis was to optimize and validate cell-based model systems and assays to investigate alpha2-ARs as drug targets. The use of immortalized cell lines as model systems is firmly established but poses several problems, since the protein of interest is expressed in a foreign environment, and thus essential components of receptor regulation or signaling cascades might be missing. Careful cell model validation is thus required; this was exemplified by three different approaches. In cells heterologously expressing alpha2A-ARs, it was noted that the transfection technique affected the test outcome; false negative adenylyl cyclase test results were produced unless a cell population expressing receptors in a homogenous fashion was used. Recombinant alpha2C-ARs in non-neuronal cells were retained inside the cells, and not expressed in the cell membrane, complicating investigation of this receptor subtype. Receptor expression enhancing proteins (REEPs) were found to be neuronalspecific adapter proteins that regulate the processing of the alpha2C-AR, resulting in an increased level of total receptor expression. Current trends call for the use of primary cells endogenously expressing the receptor of interest; therefore, primary human vascular smooth muscle cells (SMC) expressing alpha2-ARs were tested in a functional assay monitoring contractility with a myosin light chain phosphorylation assay. However, these cells were not compatible with this assay due to the loss of differentiation. A rat aortic SMC cell line transfected to express the human alpha2B-AR was adapted for the assay, and it was found that the alpha2-AR agonist, dexmedetomidine, evoked myosin light chain phosphorylation in this model.