946 resultados para Free-radical Polymerization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cross-linked polymer-gel soft matter electrolyte with superior electrochemical, thermal and mechanical properties obtained from free radical polymerization of vinyl monomers in a semi-solid organic nonionic plastic crystalline electrolyte for application in rechargeable lithium-ion batteries is discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the reactive extrusion process for polymerization, the chemical calorific effect has a great influence on the temperature. In order to quantitatively analyze the polymerization trend and optimize the processing conditions, the phenomena of the chemical calorific effect during reactive extrusion processes for free radical polymerization were analyzed. Numerical computation expressions of the heat of chemical reaction and the reactive calorific intensity were deduced, and then a numerical simulation of the reactive extrusion process for the polymerization of n-butyl methacrylate was carried out. The evolutions of the heat of chemical reaction and the reactive calorific intensity along the! axial direction of the extruder are presented, on the basis of which reactive processing conditions can be optimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gel effect in the reactive extrusion process for free radical polymerization in a closely intermeshing co-rotating twin screw extruder was investigated. First the reaction kinetic model was constructed mainly on the basis of entanglement theory. Next, numerical calculation expressions for the initiator and monomer concentrations, monomer conversion, average molecular weight and apparent viscosity were deduced. Finally, the evolution of the above variables were shown and discussed for the example of butyl methacrylate. The simulated results of the monomer conversion are in good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactive extrusion for polymerization is an integrated polymer processing technology. A new semi-implicit iterative algorithm was proposed to deal with the complicated relationships among the chemical reaction, the macromolecular structure and the chemorheological property. Then the numerical computation expressions of the average molecular weight, the monomer conversion, and the initiator concentration were deduced, and the computer simulation of the reactive extrusion process for free radical polymerization was carried out, on basis of which reactive processing conditions can be optimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the synthesis of polymeric ionic liquid [(poly-acryloyloxy)6C6C1im][NTf2], by free radical polymerization of acryloyl imidazolium-base ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2]. Moreover, the smartest synthetic route to obtain this monomer was investigated. Two different synthesis were compared. The first one started from the preparation of the monomer 6-chlorohexyl acrylate followed by substitution and metathesis to reach ionic liquid monomer. The second one started from synthesis of the ionic liquid [(HO)6C6C1im]Cl followed by metathesis and esterification in order to get ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique phenomenon of ‘autoacceleration’ was observed in a free radical polymerization of vinyl monomers and oxygen. Unlike the well known autoacceleration phenomenon in polymerization processes, this unusual phenomenon is not readily conceivable in terms of solution viscosity based reasoning. Surprisingly, we have observed manifestation of this new autoacceleration during free radical oxidative polymerization of some vinyl monomers at low conversions, where generally the polymerization reaction is zero order, the conversion–time plot are linear and viscosity effects are negligible. In the present paper, we interpret the mechanism of this new autoacceleration phenomenon on the basis of reactivity of the propagating radicals in terms of heat of formation data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free-radical retrograde-precipitation polymerization, FRRPP in short, is a novel polymerization process discovered by Dr. Gerard Caneba in the late 1980s. The current study is aimed at gaining a better understanding of the reaction mechanism of the FRRPP and its thermodynamically-driven features that are predominant in controlling the chain reaction. A previously developed mathematical model to represent free radical polymerization kinetics was used to simulate a classic bulk polymerization system from the literature. Unlike other existing models, such a sparse-matrix-based representation allows one to explicitly accommodate the chain length dependent kinetic parameters. Extrapolating from the past results, mixing was experimentally shown to be exerting a significant influence on reaction control in FRRPP systems. Mixing alone drives the otherwise severely diffusion-controlled reaction propagation in phase-separated polymer domains. Therefore, in a quiescent system, in the absence of mixing, it is possible to retard the growth of phase-separated domains, thus producing isolated polymer nanoparticles (globules). Such a diffusion-controlled, self-limiting phenomenon of chain growth was also observed using time-resolved small angle x-ray scattering studies of reaction kinetics in quiescent systems of FRRPP. Combining the concept of self-limiting chain growth in quiescent FRRPP systems with spatioselective reaction initiation of lithography, microgel structures were synthesized in a single step, without the use of molds or additives. Hard x-rays from the bending magnet radiation of a synchrotron were used as an initiation source, instead of the more statistally-oriented chemical initiators. Such a spatially-defined reaction was shown to be self-limiting to the irradiated regions following a polymerization-induced self-assembly phenomenon. The pattern transfer aspects of this technique were, therefore, studied in the FRRP polymerization of N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA), a thermoreversible and ionic hydrogel, respectively. Reaction temperature increases the contrast between the exposed and unexposed zones of the formed microgels, while the irradiation dose is directly proportional to the extent of phase separation. The response of Poly (NIPAm) microgels prepared from the technique described in this study was also characterized by small angle neutron scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial cellulose/polymethacrylate nanocomposites have received attention in numerous areas of study and in a variety of applications. The attractive properties of methacrylate polymers and bacterial cellulose, BC, allow the synthesis of new nanocomposites with distinct characteristics. In this study, BC/poly(glycidylmethacrylate) (BC/PGMA) and BC/poly(ethyleneglycol)methacrylate (BC/PPEGMA) nanocomposites were prepared through in situ free radical polymerization of GMA and PEGMA, respectively. Ammonium persulphate (APS) was used as an initiator and N,N’methylenebisacrilamide (MBA) was used as a crosslinker in BC/PGMA. Chemical composition, morphology, thermal stability, water absorption, mechanic and surface properties were determined through specific characterization techniques. The optimal polymerization was obtained at (1:2) for BC/PGMA, (1:2:0.2) ratio for BC/GMA/MBA and (1:20) for BC/PPEGMA, with 0.5% of initiator at 60 ºC during 6 h. A maximum of 67% and 87% of incorporation percentage was obtained, respectively, for the nanocomposites BC/PGMA/MBA and BC/PPEGMA. BC/PGMA nanocomposites exhibited an increase of roughness and compactation of the three-dimensional structure, an improvement in the thermal and mechanical properties, and a decrease in their swelling ability and crystallinity. On the other hand, BC/PPEGMA showed a decrease of stiffness of three-dimensional structure, improvement in thermal and mechanical properties, an increase in their swelling ability and a decrease the crystallinity. Both BC/polymethacrylate nanocomposites exhibited a basic surface character. The acid treatment showed to be a suitable strategy to modifiy BC/PGMA nanocomposites through epoxide ring-opening reaction mechanism. Nanocomposites became more compact, smooth and with more water retention ability. A decrease in the thermal and mechanical proprieties was observed. The new nanocomposites acquired properties useful to biomedical applications or/and removal of heavy metals due to the presence of functional groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication we provide the most recent results on RAFT-mediated ring-closing polymerization of diallyldimethylammonium chloride (DADMAC). The polymerization was carried out in aqueous solution employing 2,2′-azobis(2-methylpropionamidine)-dihydrochloride as the free radical initiator and trithiocarbonate RAFT agent (2-{[(dodecylsulfanyl)carbonothioyl sulfanyl]}propanoic acid, DoPAT) as the controlling RAFT agent. The results show that – while the system is not as completely controlled as previously described – it is nevertheless possible to mediate the polymerization of DADMAC and impart some living characteristics onto the system. The initial study on the RAFT-mediated polymerization of DADMAC may have overestimated the degree of livingness within this reaction. However, it is possible – at low conversions – for some living characteristics to be observed, as the evolution of molecular weight with conversion is linear. In addition, polymers with a reasonably narrow polydispersity can be isolated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two kinds of novel macrocyclic aryl thioether ether oligomers were synthesized by nucleophilic condensation reaction in high yields under pseudo-high-dilution condition. A combination of H-1 NMR, GPC and MALDI-TOF MS analyses unambiguously confirmed the cyclic nature and their distributions, Macrocyclic thioether ether ketone oligomers can undergo facile melt ring opening polymerization(ROP) initiated by thiyl radical to give a high molecular weight polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel macrocyclic aryl thioether ester oligomers have been synthesized in high yield from phthaloyl dichloride and 4,4'-thiodiphenol under pseudo high dilution conditions. The cyclic nature was unambiguously confirmed by a combination of MALDI-TOF MS, gel permeation chromatography and NMR analyses. Single-crystal X-ray diffraction of cyclic ester dimer reveals no severe strain on the cyclic structure. The free-radical ring opening polymerization (ROP) of the macrocyclic oligomers was achieved to give high molecular weight polymers via a transthioetherification reaction. The molecular weight of the polymer resulting from ROP decreases as the conversion of cyclic oligomers increases after a polymerization period of 30 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)