986 resultados para Fractional Exponential Function
Resumo:
This paper studies the describing function (DF) of systems consisting in a mass subjected to nonlinear friction. The friction force is composed in three components namely, the viscous, the Coulomb and the static forces. The system dynamics is analyzed in the DF perspective revealing a fractional-order behaviour. The reliability of the DF method is evaluated through the signal harmonic content and the limit cycle prediction.
Resumo:
This paper studies the describing function (DF) of systems constituted by a mass subjected to nonlinear friction. The friction force is decomposed into two components, namely, the viscous and the Coulomb friction. The system dynamics is analyzed in the DF perspective revealing a fractional-order behavior. The reliability of the DF method is evaluated through the signal harmonic contents.
Resumo:
Mathematics Subject Classification: 74D05, 26A33
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C45
Resumo:
A robust exponential function based controller is designed to synchronize effectively a given class of Chua's chaotic systems. The stability of the drive-response systems framework is proved through the Lyapunov stability theory. Computer simulations are given to illustrate and verify the method. © 2013 Patrick Louodop et al.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Colletotrichum gossypii var. cephalosporioides, the fungus that causes ramulosis disease of cotton, is widespread in Brazil and can cause severe yield loss. Because weather conditions greatly affect disease development, the objective of this work was to develop weather-based models to assess disease favorability. Latent period, incidence, and severity of ramulosis symptoms were evaluated in controlled environment experiments using factorial combinations of temperature (15, 20, 25, 30, and 35 degrees C) and leaf wetness duration (0, 4, 8, 16, 32, and 64 h after inoculation). Severity was modeled as an exponential function of leaf wetness duration and temperature. At the optimum temperature of disease development, 27 degrees C, average latent period was 10 days. Maximum ramulosis severity occurred from 20 to 30 degrees C, with sharp decreases at lower and higher temperatures. Ramulosis severity increased as wetness periods were increased from 4 to 32 h. In field experiments at Piracicaba, Sao Paulo State, Brazil, cotton plots were inoculated (10(5) conidia ml(-1)) and ramulosis severity was evaluated weekly. The model obtained from the controlled environment study was used to generate a disease favorability index for comparison with disease progress rate in the field. Hourly measurements of solar radiation, temperature, relative humidity, leaf wetness duration, rainfall, and wind speed were also evaluated as possible explanatory variables. Both the disease favorability model and a model based on rainfall explained ramulosis growth rate well, with R(2) of 0.89 and 0.91, respectively. They are proposed as models of ramulosis development rate on cotton in Brazil, and weather-disease relationships revealed by this work can form the basis of a warning system for ramulosis development.
Resumo:
A simplex-lattice statistical project was employed to study an optimization method for a preservative system in an ophthalmic suspension of dexametasone and polymyxin B. The assay matrix generated 17 formulas which were differentiated by the preservatives and EDTA (disodium ethylene diamine-tetraacetate), being the independent variable: X-1 = chlorhexidine digluconate (0.010 % w/v); X-2 = phenylethanol (0.500 % w/v); X-3 = EDTA (0.100 % w/v). The dependent variable was the Dvalue obtained from the microbial challenge of the formulas and calculated when the microbial killing process was modeled by an exponential function. The analysis of the dependent variable, performed using the software Design Expert/W, originated cubic equations with terms derived from stepwise adjustment method for the challenging microorganisms: Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, Candida albicans and Aspergillus niger. Besides the mathematical expressions, the response surfaces and the contour graphics were obtained for each assay. The contour graphs obtained were overlaid in order to permit the identification of a region containing the most adequate formulas (graphic strategy), having as representatives: X-1 = 0.10 ( 0.001 % w/v); X-2 = 0.80 (0.400 % w/v); X-3 = 0.10 (0.010 % w/v). Additionally, in order to minimize responses (Dvalue), a numerical strategy corresponding to the use of the desirability function was used, which resulted in the following independent variables combinations: X-1 = 0.25 (0.0025 % w/v); X-2 = 0.75 (0.375 % w/v); X-3 = 0. These formulas, derived from the two strategies (graphic and numerical), were submitted to microbial challenge, and the experimental Dvalue obtained was compared to the theoretical Dvalue calculated from the cubic equation. Both Dvalues were similar to all the assays except that related to Staphylococcus aureus. This microorganism, as well as Pseudomonas aeruginosa, presented intense susceptibility to the formulas independently from the preservative and EDTA concentrations. Both formulas derived from graphic and numerical strategies attained the recommended criteria adopted by the official method. It was concluded that the model proposed allowed the optimization of the formulas in their preservation aspect.
Resumo:
The present paper proposes an approach to obtaining the activation energy distribution for chemisorption of oxygen onto carbon surfaces, while simultaneously allowing for the activation energy dependence of the pre-exponential factor of the rate constant. Prior studies in this area have considered this factor to be uniform, thereby biasing estimated distributions. The results show that the derived activation energy distribution is not sensitive to the chemisorption mechanism because of the step function like property of the coverage. The activation energy distribution is essentially uniform for some carbons, and has two or possibly more discrete stages, suggestive of at least two types of sites, each with its own uniform distribution. The pre-exponential factors of the reactions are determined directly from the experimental data, and are found not to be constant as assumed in earlier work, but correlated with the activation energy. The latter results empirically follow an exponential function, supporting some earlier statistical and experimental work. The activation energy distribution obtained in the present paper permits improved correlation of chemisorption data in comparison to earlier studies. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.
Resumo:
The presence of subcentres cannot be captured by an exponential function. Cubic spline functions seem more appropriate to depict the polycentricity pattern of modern urban systems. Using data from Barcelona Metropolitan Region, two possible population subcentre delimitation procedures are discussed. One, taking an estimated derivative equal to zero, the other, a density gradient equal to zero. It is argued that, in using a cubic spline function, a delimitation strategy based on derivatives is more appropriate than one based on gradients because the estimated density can be negative in sections with very low densities and few observations, leading to sudden changes in estimated gradients. It is also argued that using as a criteria for subcentre delimitation a second derivative with value zero allow us to capture a more restricted subcentre area than using as a criteria a first derivative zero. This methodology can also be used for intermediate ring delimitation.
Resumo:
PURPOSE: The aim of this study was to compare VO2 kinetics during constant power cycle exercise measured using a conventional facemask (CM) or a respiratory snorkel (RS) designed for breath-by-breath analysis in swimming. METHODS: VO2 kinetics parameters-obtained using CM or RS, in randomized counterbalanced order-were compared in 10 trained triathletes performing two submaximal heavy-intensity cycling square-wave transitions. These VO2 kinetics parameters (ie, time delay: td1, td2; time constant: τ1, τ2; amplitude: A1, A2, for the primary phase and slow component, respectively) were modeled using a double exponential function. In the case of the RS data, this model incorporated an individually determined snorkel delay (ISD). RESULTS: Only td1 (8.9 ± 3.0 vs 13.8 ± 1.8 s, P < .01) differed between CM and RS, whereas all other parameters were not different (τ1 = 24.7 ± 7.6 vs 21.1 ± 6.3 s; A1 = 39.4 ± 5.3 vs 36.8 ± 5.1 mL x min(-1) x kg(-1); td2 = 107.5 ± 87.4 vs 183.5 ± 75.9 s; A2' (relevant slow component amplitude) = 2.6 ± 2.4 vs 3.1 ± 2.6 mL x min(-1) x kg(-1) for CM and RS, respectively). CONCLUSIONS: Although there can be a small mixture of breaths allowed by the volume of the snorkel in the transition to exercise, this does not appear to significantly influence the results. Therefore, given the use of an ISD, the RS is a valid instrument for the determination of VO2 kinetics within submaximal exercise.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
The treatments for ischemic stroke can only be administered in a narrow time-window. However, the ischemia onset time is unknown in ~30% of stroke patients (wake-up strokes). The objective of this study was to determine whether MR spectra of ischemic brains might allow the precise estimation of cerebral ischemia onset time. We modeled ischemic stroke in male ICR-CD1 mice using a permanent middle cerebral artery filament occlusion model with laser Doppler control of the regional cerebral blood flow. Mice were then subjected to repeated MRS measurements of ipsilateral striatum at 14.1 T. A striking initial increase in γ-aminobutyric acid (GABA) and no increase in glutamine were observed. A steady decline was observed for taurine (Tau), N-acetyl-aspartate (NAA) and similarly for the sum of NAA+Tau+glutamate that mimicked an exponential function. The estimation of the time of onset of permanent ischemia within 6 hours in a blinded experiment with mice showed an accuracy of 33±10 minutes. A plot of GABA, Tau, and neuronal marker concentrations against the ratio of acetate/NAA allowed precise separation of mice whose ischemia onset lay within arbitrarily chosen time-windows. We conclude that (1)H-MRS has the potential to detect the clinically relevant time of onset of ischemic stroke.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.