615 resultados para Formyl methionyl leucyl phenylalanine (fMLP)
Resumo:
The tamarind (Tamarindus indica L) is indigenous to Asian countries and widely cultivated in the American continents. The tamarind fruit pulp extract (ExT), traditionally used in spices, food components and juices, is rich in polyphenols that have demonstrated anti-atherosclerotic, antioxidant and immunomodulatory activities. This study evaluated the modulator effect of a crude hydroalcoholic ExT on some peripheral human neutrophil functions. The neutrophil reactive oxygen species generation, triggered by opsonized zymosan (OZ), n-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA), and assessed by luminol- and lucigenin-enhanced chemiluminescence (LumCL and LucCL, respectively), was inhibited by ExT in a concentration-dependent manner. ExT was a more effective inhibitor of the PMA-stimulated neutrophil function [IC(50) (in mu g/10(6)cells) = 115.7 +/- 9.7 (LumCL) and 174.5 +/- 25.9 (LucCL)], than the OZ- [IC(50) = 248.5 +/- 23.1 (LumCL) and 324.1 +/- 34.6 (LucCL)] or fMLP-stimulated cells [IC(50) = 178.5 +/- 12.2 (LumCL)]. The ExT also inhibited neutrophil NADPH oxidase activity (evaluated by O(2) consumption), degranulation and elastase activity (evaluated by spectrophotometric methods) at concentrations higher than 200 mu g/10(6) cells, without being toxic to the cells, under the conditions assessed. Together, these results indicate the potential of ExT as a source of compounds that can modulate the neutrophil-mediated inflammatory diseases. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, histopathological analysis of rat mesentery was used to quantify the effect of two anti-inflammatory agents, dexamethasone (Dex) and pertussis toxin (Ptx), on leukocyte migration. The intravenous injection of Dex (1 mg/kg) and Ptx (1,200 ng) 1 h prior to the intraperitoneal injection of the inflammatory stimuli lipopolysaccharide (LPS) or formyl-methionyl-leucyl-phenylalanine (fMLP) significantly reduced the neutrophil diapedesis (LPS: Ptx = 0.86 ± 0.19 and Dex = 0.35 ± 0.13 vs saline (S) = 2.85 ± 0.59; fMLP: Ptx = 0.43 ± 0.09 and Dex 0.01 ± 0.01 vs S = 1.08 ± 0.15 neutrophil diapedesis/field) and infiltration (LPS: Ptx = 6.29 ± 1.4 and Dex = 3.06 ± 0.76 vs S = 15.94 ± 3.97; fMLP: Ptx = 3.85 ± 0.56 and Dex = 0.40 ± 0.16 vs S = 7.15 ± 1.17 neutrophils/field) induced by the two agonists in the rat mesentery. The inhibitory effect of Dex and Ptx was clearly visible in the fields nearest the venule (up to 200 µm), demonstrating that these anti-inflammatory agents act preferentially in the transmigration of neutrophils from the vascular lumen into the interstitial space, but not in cell movement in response to a haptotactic gradient. The mesentery of rats pretreated with Dex showed a decreased number of neutrophils within the venules (LPS: Dex = 1.50 ± 0.38 vs S = 4.20 ± 1.01; fMLP: Dex = 0.25 ± 0.11 vs S = 2.20 ± 0.34 neutrophils in the lumen/field), suggesting that this inhibitor may be acting at a step that precedes neutrophil arrival in the inflamed tissue. In contrast to that observed with Dex treatment, the number of neutrophils found in mesenteric venules was significantly elevated in animals pretreated with Ptx (LPS: Ptx = 9.85 ± 2.25 vs S = 4.20 ± 1.01; fMLP: Ptx = 4.66 ± 1.24 vs S = 2.20 ± 0.34 neutrophils in the lumen/field). This discrepancy shows that Ptx and Dex act via different mechanisms and suggests that Ptx prevents locomotion of neutrophils from the vascular lumen to the interstitial space. In conclusion, the method described here is useful for quantifying the inflammatory and anti-inflammatory effect of different substances. The advantage of this histopathological approach is that it provides additional information about the steps involved in leucocyte migration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eosinophil migration in vivo is markedly attenuated in rats treated chronically with the NO synthase (NOS) inhibitor Nω-nitro-l-arginine methyl ester (l-NAME). In this study, we investigated the existence of a NOS system in eosinophils. Our results demonstrated that rat peritoneal eosinophils strongly express both type II (30.2 ± 11.6% of counted cells) and type III (24.7 ± 7.4% of counted cells) NOS, as detected by immunohistochemistry using affinity purified mouse mAbs. Eosinophil migration in vitro was evaluated by using 48-well microchemotaxis chambers and the chemotactic agents used were N-formyl-methionyl-leucyl-phenylalanine (fMLP, 5 × 10−8 M) and leukotriene B4 (LTB4, 10−8 M). l-NAME (but not d-NAME) significantly inhibited the eosinophil migration induced by both fMLP (54% reduction for 1.0 mM; P < 0.05) and LTB4 (61% reduction for 1.0 mM; P < 0.05). In addition, the type II NOS inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine and the type I/II NOS inhibitor 1-(2-trifluoromethylphenyl) imidazole also markedly (P < 0.05) attenuated fMLP- (52% and 38% reduction for 1.0 mM, respectively) and LTB4- (52% and 51% reduction for 1.0 mM, respectively) induced migration. The inhibition of eosinophil migration by l-NAME was mimicked by the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-a] quinoxalin-1-one (0.01 and 0.1 mM) and reversed by either sodium nitroprusside (0.1 mM) or dibutyryl cyclic GMP (1 mM). We conclude that eosinophils do express NO synthase(s) and that nitric oxide plays an essential role in eosinophil locomotion by acting through a cyclic GMP transduction mechanism.
Resumo:
Self-organization is a common theme in biology. One mechanism of self-organization is the creation of chemical patterns by the diffusion of chemical reactants and their nonlinear interactions. We have recently observed sustained unidirectional traveling chemical redox [NAD(P)H − NAD(P)+] waves within living polarized neutrophils. The present study shows that an intracellular metabolic wave responds to formyl peptide receptor agonists, but not antagonists, by splitting into two waves traveling in opposite directions along a cell's long axis. Similar effects were noted with other neutrophil-activating substances. Moreover, when cells were exposed to an N-formyl-methionyl-leucyl-phenylalanine (FMLP) gradient whose source was perpendicular to the cell's long axis, cell metabolism was locally perturbed with reorientation of the pattern in a direction perpendicular to the initial cellular axis. Thus, extracellular activating signals and the signals' spatial cues are translated into distinct intracellular dissipative structures.
Resumo:
Chemotaxis, the phenomenon in which cells move in response to extracellular chemical gradients, plays a prominent role in the mammalian immune response. During this process, a number of chemical signals, called chemoattractants, are produced at or proximal to sites of infection and diffuse into the surrounding tissue. Immune cells sense these chemoattractants and move in the direction where their concentration is greatest, thereby locating the source of attractants and their associated targets. Leading the assault against new infections is a specialized class of leukocytes (white blood cells) known as neutrophils, which normally circulate in the bloodstream. Upon activation, these cells emigrate out of the vasculature and navigate through interstitial tissues toward target sites. There they phagocytose bacteria and release a number of proteases and reactive oxygen intermediates with antimicrobial activity. Neutrophils recruited by infected tissue in vivo are likely confronted by complex chemical environments consisting of a number of different chemoattractant species. These signals may include end target chemicals produced in the vicinity of the infectious agents, and endogenous chemicals released by local host tissues during the inflammatory response. To successfully locate their pathogenic targets within these chemically diverse and heterogeneous settings, activated neutrophils must be capable of distinguishing between the different signals and employing some sort of logic to prioritize among them. This ability to simultaneously process and interpret mulitple signals is thought to be essential for efficient navigation of the cells to target areas. In particular, aberrant cell signaling and defects in this functionality are known to contribute to medical conditions such as chronic inflammation, asthma and rheumatoid arthritis. To elucidate the biomolecular mechanisms underlying the neutrophil response to different chemoattractants, a number of efforts have been made toward understanding how cells respond to different combinations of chemicals. Most notably, recent investigations have shown that in the presence of both end target and endogenous chemoattractant variants, the cells migrate preferentially toward the former type, even in very low relative concentrations of the latter. Interestingly, however, when the cells are exposed to two different endogenous chemical species, they exhibit a combinatorial response in which distant sources are favored over proximal sources. Some additional results also suggest that cells located between two endogenous chemoattractant sources will respond to the vectorial sum of the combined gradients. In the long run, this peculiar behavior could result in oscillatory cell trajectories between the two sources. To further explore the significance of these and other observations, particularly in the context of physiological conditions, we introduce in this work a simplified phenomenological model of neutrophil chemotaxis. In particular, this model incorporates a trait commonly known as directional persistence - the tendency for migrating neutrophils to continue moving in the same direction (much like momentum) - while also accounting for the dose-response characteristics of cells to different chemical species. Simulations based on this model suggest that the efficiency of cell migration in complex chemical environments depends significantly on the degree of directional persistence. In particular, with appropriate values for this parameter, cells can improve their odds of locating end targets by drifting through a network of attractant sources in a loosely-guided fashion. This corroborates the prediction that neutrophils randomly migrate from one chemoattractant source to the next while searching for their end targets. These cells may thus use persistence as a general mechanism to avoid being trapped near sources of endogenous chemoattractants - the mathematical analogue of local maxima in a global optimization problem. Moreover, this general foraging strategy may apply to other biological processes involving multiple signals and long-range navigation.
Resumo:
Recent studies have reported that exogenous gangliosides, the sialic acid-containing glycosphingolipids, are able to modulate many cellular functions. We examined the effect of micelles of mono- and trisialoganglioside GM1 and GT1b on the production of reactive oxygen species by stimulated human polymorphonuclear neutrophils using different spectroscopic methods. The results indicated that exogenous gangliosides did not influence extracellular superoxide anion (O2.-) generation by polymorphonuclear neutrophils activated by receptor-dependent formyl-methionyl-leucyl-phenylalanine. However, when neutrophils were stimulated by receptor-bypassing phorbol 12-myristate 13-acetate (PMA), gangliosides above their critical micellar concentrations prolonged the lag time preceding the production in a concentration-dependent way, without affecting total extracellular O2.- generation detected by superoxide dismutase-inhibitable cytochrome c reduction. The effect of ganglioside GT1b (100 µM) on the increase in lag time was shown to be significant by means of both superoxide dismutase-inhibitable cytochrome c reduction assay and electron paramagnetic resonance spectroscopy (P < 0.0001 and P < 0.005, respectively). The observed phenomena can be attributed to the ability of ganglioside micelles attached to the cell surface to slow down PMA uptake, thus increasing the diffusion barrier and consequently delaying membrane events responsible for PMA-stimulated O2.- production.
Resumo:
Polymorphonuclear neutrophils release ATP in response to stimulation by chemoattractants, such as the peptide N-formyl-methionyl-leucyl-phenylalanine. Released ATP and the hydrolytic product adenosine regulate chemotaxis of neutrophils by sequentially activating purinergic nucleotide and adenosine receptors, respectively. Here we show that that ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1, CD39) is a critical enzyme for hydrolysis of released ATP by neutrophils and for cell migration in response to multiple agonists (N-formyl-methionyl-leucyl-phenylalanine, interleukin-8, and C5a). Upon stimulation of human neutrophils or differentiated HL-60 cells in a chemotactic gradient, E-NTPDase1 tightly associates with the leading edge of polarized cells during chemotaxis. Inhibition of E-NTPDase1 reduces the migration speed of neutrophils but not their ability to detect the orientation of the gradient field. Studies of neutrophils from E-NTPDase1 knock-out mice reveal similar impairments of chemotaxis in vitro and in vivo. Thus, E-NTPDase1 plays an important role in regulating neutrophil chemotaxis by facilitating the hydrolysis of extracellular ATP.
Resumo:
In neutrophils activated to secrete with formyl-methionyl-leucyl-phenylalanine, intermediate filaments are phosphorylated transiently by cyclic guanosine monophosphate (cGMP)-dependent protein kinase (G-kinase). cGMP regulation of vimentin organization was investigated. During granule secretion, cGMP levels were elevated and intermediate filaments were transiently assembled at the pericortex to areas devoid of granules and microfilaments. Microtubule and microfilament inhibitors affected intermediate filament organization, granule secretion, and cGMP levels. Cytochalasin D and nocodazole caused intermediate filaments to assemble at the nucleus, rather than at the pericortex. cGMP levels were elevated in neutrophils by both inhibitors; however, with cytochalasin D, cGMP was elevated earlier and granule secretion was excessive. Nocodazole did not affect normal cGMP elevations, but specific granule secretion was delayed. LY83583, a guanylyl cyclase antagonist, inhibited granule secretion and intermediate filament organization, but not microtubule or microfilament organization. Intermediate filament assembly at the pericortex and secretion were partially restored by 8-bromo-cGMP in LY83583-treated neutrophils, suggesting that cGMP regulates these functions. G-kinase directly induced intermediate filament assembly in situ, and protein phosphatase 1 disassembled filaments. However, in intact cells stimulated with formyl-methionyl-leucyl-phenylalanine, intermediate filament assembly is focal and transient, suggesting that vimentin phosphorylation is compartmentalized. We propose that, in addition to changes in microfilament and microtubule organization, granule secretion is also accompanied by changes in intermediate filament organization, and that cGMP regulates vimentin filament organization via activation of G-kinase.
Resumo:
Brain water content (brain edema), intracranial pressure, and cerebrospinal fluid (CSF) concentrations of lactate and protein increased significantly during 24 h of experimental meningitis due to Streptococcus pneumoniae, but changes were similar in normal and neutropenic rabbits. In sterile meningitis induced by N-formyl-methionyl-leucyl-phenyl-alanine (fMLP), low and high doses of fMLP were equally effective in inducing CSF pleocytosis, whereas only high doses of fMLP caused brain edema. High doses of fMLP injected intracisternally during pneumococcal meningitis also increased brain water content. The fMLP did not significantly increase intracranial pressure or CSF concentrations of lactate or protein in sterile or pneumococcal meningitis, nor did it cause brain edema in neutropenic animals. Thus, granulocytes may contribute to brain edema during meningitis if adequately stimulated, but intracranial pressure and CSF protein and lactate concentrations appear independent of granulocytes. Stimulation does not appear to occur early in meningitis, when granulocytes were without effect on brain edema.
Resumo:
Lyme borreliosis is a tick-transmitted infection caused by the spirochete bacterium Borrelia burgdorferi sensu lato. The tick injects bacteria into host skin, where a first line defence, mainly the complement system, neutrophils, dendritic cells and macrophages are ready to attack foreign intruders. However, in the case of Lyme borreliosis, the original immune response in the skin is untypically mild among bacterial infections. A further untypical feature is the ability of B. burgdorferi to disseminate to distant organs, where, in some patients, symptoms appear after years after the original infection. This study aimed at uncovering some of the immune evasion mechanisms utilized by B. burgdorferi against the complement system, neutrophils and dendritic cells. B. burgdorferi was shown to inhibit chemotaxis of human neutrophils towards nformyl- methyl-leucyl-phenylalanine (fMLP). Outer surface protein B (OspB) of B. burgdorferi was shown to promote resistance to the attack of the complement system and neutrophil phagocytosis at low complement concentrations. B. burgdorferi was shown to inhibit migration of dendritic cells in vitro towards CCL19 and CCL21 and also in an in vivo model. This effect was shown to be due to the absence of CD38 on the borrelia-stimulated dendritic cell surface. A defect in p38 mitogen-activated-protein-kinase (p38) signaling was linked to defective CD38 expression. A defect in CD38 expression on B. burgdorferi-stimulated neutrophils was also observed. In this study, a number of novel immune evasion strategies utilized by B burgdorferi were chracterized. However, further studies are needed as other immune evasion mechanisms await to be uncovered.
Resumo:
1. Phagocytic polymorphonuclear leucocytes (PMNLs) or neutrophils have a marked avidity for the uptake of particulate material and are the first cell type to respond to inflammatory stimuli in vivo. 2. By harnessing these pathophysiological characteristics the inherent targeting capacity of the PMNL could be exploited to carry drug loaded particles to these sites. 3. In vitro chemotaxis of PMNLs was studied in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) in the Blindwell chamber assay. 4. After phagocytosis of 1.1m polystyrene latex (PSL) beads at a range of incubation concentrations (5,10,20, and 30 beads/cell) the migration of the PMNL population was not significantly different from control, without beads. 5. The distribution of the beads within the filter showed that a disproportionately large number of PSL (50%) were associated with the cells on the surface of the filter that had not penetrated the filter. Eighty per cent of the PMNL population migrated and despite containing less PSL beads/cell, 50% of the dose was carried into the filter. Between 5 and 10% of these PSL were carried beyond 60m in the assay. 6. These results suggested heterogeneity of the PMNL population and to achieve efficient targeting with these cells preferential selection of the migratory sub-population would be needed. 7. The air-pouch model was then developed to study the focal accumulation of PMNLs in vivo. The PMNL isolated did not survive long enough in the circulation due to the trauma of the isolation procedure used; an alternative method will have to be employed.
Resumo:
The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
5-lipoxygenase (5-LO) catalyzes the initial steps in the formation of leukotrienes, a group of inflammatory mediators derived from arachidonic acid (AA). Here we describe that activation of p38 mitogen-activated protein kinase in human polymorphonuclear leukocytes and in Mono Mac 6 cells leads to activation of downstream kinases, which can subsequently phosphorylate 5-LO in vitro. Different agents activated the 5-LO kinase activities, including stimuli for cellular leukotriene biosynthesis (A23187, thapsigargin, N-formyl-leucyl-phenylalanine), compounds that up-regulate the capacity for leukotriene biosynthesis (phorbol 12-myristate 13-acetate, tumor necrosis factor α, granulocyte/macrophage colony-stimulating factor), and well known p38 stimuli as sodium arsenite and sorbitol. For all stimuli, 5-LO kinase activation was counteracted by SB203580 (3 μM or less), an inhibitor of p38 kinase. At least two p38-dependent 5-LO kinase activities were found. Based on migration properties in in-gel kinase assays and immunoreactivity, one of these was identified as mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP kinase 2). The other appeared to be MAPKAP kinase 3; however, it could not be excluded that also other p38-dependent kinases contributed. When polymorphonuclear leukocytes were incubated with sodium arsenite (strong activator of 5-LO kinases), platelet-activating factor and exogenous AA, there was a 4-fold increase in 5-LO activity as compared with incubations with only platelet-activating factor and AA. This indicates that 5-LO phosphorylation can be one factor determining cellular 5-LO activity.
Resumo:
Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.