994 resultados para Forest Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptation potential of forests to rapid climatic changes can be assessed from vegetation dynamics during past climatic changes as preserved in fossil pollen data. However, pollen data reflect the integrated effects of climate and biotic processes, such as establishment, survival, competition, and migration. To disentangle these processes, we compared an annually laminated late Würm and Holocene pollen record from the Central Swiss Plateau with simulations of a dynamic forest patch model. All input data used in the simulations were largely independent from pollen data; i.e. the presented analysis is non-circular. Temperature and precipitation scenarios were based on reconstructions from pollen-independent sources. The earliest arrival times of the species at the study site after the last glacial were inferred from pollen maps. We ran a series of simulations under different combinations of climate and immigration scenarios. In addition, the sensitivity of the simulated presence/absence of four major species to changes in the climate scenario was examined. The pattern of the pollen record could partly be explained by the used climate scenario, mostly by temperature. However, some features, in particular the absence of most species during the late Würm could only be simulated if the winter temperature anomalies of the used scenario were decreased considerably. Consequently, we had to assume in the simulations, that most species immigrated during or after the Younger Dryas (12 000 years BP), Abies and Fagus even later. Given the timing of tree species immigration, the vegetation was in equilibrium with climate during long periods, but responded with lags at the time-scale of centuries to millennia caused by a secondary succession after rapid climatic changes such as at the end of Younger Dryas, or immigration of dominant taxa. Climate influenced the tree taxa both directly and indirectly by changing inter-specific competition. We concluded, that also during the present fast climatic change, species migration might be an important process, particularly if geographic barriers, such as the Alps are in the migrational path.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to find out which factors influenced the forest dynamics in northern Italy during the Holocene, a palaeoecological approach involving pollen analysis was combined with ecosystem modelling. The dynamic and distribution based forest model DisCForm was run with different input scenarios for climate, species immigration, fire, and human impact and the similarity of the simulations with the original pollen record was assessed. From the comparisons of the model output and the pollen core, it appears that immigration was most important in the first part of the Holocene, and that fire and human activity had a major influence in the second half. Species not well represented in the simulation outputs are species with a higher abundance in the past than today (Corylus), with their habitat in riparian forests (Alnus) or with a strong response to human impact (Castanea).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desmatamento na Amazônia brasileira já alterou cerca de 750 milhões de hectares e desse total, 20% encontra-se com algum nível de degradação. A reincorporação ao processo produtivo das áreas alteradas com o reflorestamento de espécies tropicais, de valor comercial, é uma alternativa para minimizar os impactos ambientais, com benefícios ecológicos, aumento da oferta de madeira e diminuição da pressão sobre as florestas naturais remanescentes. No entanto, um dos grandes empecilhos para o reflorestamento é a falta de conhecimentos científicos sobre o crescimento de espécies nativas e exóticas. Diante disto, este trabalho teve como objetivo avaliar a eficiência de diferentes sistemas de plantios com espécies florestais nativa e exótica para recuperação de áreas alteradas. O trabalho foi realizado no município de Dom Eliseu, estado do Pará, em três sistemas de uso da terra: plantio puro (Schizolobium parahyba var. amazonicum e Khaya ivorensis), consórcio de espécies florestais (S. parahyba var. amazonicum e Khaya ivorensis), sistema agroflorestal (S. parahyba var. amazonicum e Musa sp). Aos 40 meses de idade, em plantio homogêneo, Schizolobium parahyba var. amazonicum mostrou maior crescimento silvicultural (altura e diâmetro) no espaçamento 4 m x 3 m e Khaya ivorensis no espaçamento 4 m x 4 m. No entanto, o paricá apresentou melhor desempenho em sistema de consórcio e sistema agroflorestal. O melhor desempenho de K. ivorensis foi no consórcio de espécies. Entre os sistemas de plantio estudados (SAF e misto de espécies), a deposição de biomassa foi maior no sistema de consórcio de espécies com 3.737,5 kg ha-1, sendo que, a maior contribuição de material vegetal foi do paricá. Foi evidenciada correlação negativa entre a deposição de serapilheira e a precipitação pluviométrica para o paricá, e positiva para K. ivorensis. Os resultados obtidos mostraram que o modelo florestal de consórcio de espécies mostrou-se promissor e pode ser uma alternativa para recuperação de áreas alteradas, de modo a oferecer diferentes opções de madeira e ao mesmo tempo, agregar fatores positivos em relação a produção de biomassa e aspectos físico-químicos do solo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study projects land cover probabilities under climate change for corn (maize), soybeans, spring and winter wheat, winter wheat-soybean double cropping, cotton, grassland and forest across 16 central U.S. states at a high spatial resolution, while also taking into account the influence of soil characteristics and topography. The scenarios span three oceanic-atmospheric global circulation models, three Representative Concentration Pathways, and three time periods (2040, 2070, 2100). As climate change intensifies, the suitable area for all six crops display large northward shifts. Total suitable area for spring wheat, followed by corn and soybeans, diminish. Suitable area for winter wheat and for winter wheat-soybean double-cropping expand northward, while cotton suitability migrates to new, more northerly, locations. Suitability for forest intensifies in the south while yielding to crops in the north; grassland intensifies in the western Great Plains as crop suitability diminishes. To maintain current broad geographic patterns of land use, large changes in the thermal response of crops such as corn would be required. A transition from corn-soybean to winter wheat-soybean doubling cropping is an alternative adaptation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paleoceanographic archives derived from 17 marine sediment cores reconstruct the response of the Southwest Pacific Ocean to the peak interglacial, Marine Isotope Stage (MIS) 5e (ca. 125?ka). Paleo-Sea Surface Temperature (SST) estimates were obtained from the Random Forest model-an ensemble decision tree tool-applied to core-top planktonic foraminiferal faunas calibrated to modern SSTs. The reconstructed geographic pattern of the SST anomaly (maximum SST between 120 and 132?ka minus mean modern SST) seems to indicate how MIS 5e conditions were generally warmer in the Southwest Pacific, especially in the western Tasman Sea where a strengthened East Australian Current (EAC) likely extended subtropical influence to ca. 45°S off Tasmania. In contrast, the eastern Tasman Sea may have had a modest cooling except around 45°S. The observed pattern resembles that developing under the present warming trend in the region. An increase in wind stress curl over the modern South Pacific is hypothesized to have spun-up the South Pacific Subtropical Gyre, with concurrent increase in subtropical flow in the western boundary currents that include the EAC. However, warmer temperatures along the Subtropical Front and Campbell Plateau to the south suggest that the relative influence of the boundary inflows to eastern New Zealand may have differed in MIS 5e, and these currents may have followed different paths compared to today.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian Atlantic Forest is one of the richest biodiversity hotspots of the world. Paleoclimatic models have predicted two large stability regions in its northern and central parts, whereas southern regions might have suffered strong instability during Pleistocene glaciations. Molecular phylogeographic and endemism studies show, nevertheless, contradictory results: although some results validate these predictions, other data suggest that paleoclimatic models fail to predict stable rainforest areas in the south. Most studies, however, have surveyed species with relatively high dispersal rates whereas taxa with lower dispersion capabilities should be better predictors of habitat stability. Here, we have used two land planarian species as model organisms to analyse the patterns and levels of nucleotide diversity on a locality within the Southern Atlantic Forest. We find that both species harbour high levels of genetic variability without exhibiting the molecular footprint of recent colonization or population expansions, suggesting a long-term stability scenario. The results reflect, therefore, that paleoclimatic models may fail to detect refugia in the Southern Atlantic Forest, and that model organisms with low dispersal capability can improve the resolution of these models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Geographic Information System (GIS) was used to model datasets of Leyte Island, the Philippines, to identify land which was suitable for a forest extension program on the island. The datasets were modelled to provide maps of the distance of land from cities and towns, land which was a suitable elevation and slope for smallholder forestry and land of various soil types. An expert group was used to assign numeric site suitabilities to the soil types and maps of site suitability were used to assist the selection of municipalities for the provision of extension assistance to smallholders. Modelling of the datasets was facilitated by recent developments of the ArcGIS® suite of computer programs and derivation of elevation and slope was assisted by the availability of digital elevation models (DEM) produced by the Shuttle Radar Topography (SRTM) mission. The usefulness of GIS software as a decision support tool for small-scale forestry extension programs is discussed.