874 resultados para Forecast demand


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Managing the great complexity of enterprise system, due to entities numbers, decision and process varieties involved to be controlled results in a very hard task because deals with the integration of its operations and its information systems. Moreover, the enterprises find themselves in a constant changing process, reacting in a dynamic and competitive environment where their business processes are constantly altered. The transformation of business processes into models allows to analyze and redefine them. Through computing tools usage it is possible to minimize the cost and risks of an enterprise integration design. This article claims for the necessity of modeling the processes in order to define more precisely the enterprise business requirements and the adequate usage of the modeling methodologies. Following these patterns, the paper concerns the process modeling relative to the domain of demand forecasting as a practical example. The domain of demand forecasting was built based on a theoretical review. The resulting models considered as reference model are transformed into information systems and have the aim to introduce a generic solution and be start point of better practical forecasting. The proposal is to promote the adequacy of the information system to the real needs of an enterprise in order to enable it to obtain and accompany better results, minimizing design errors, time, money and effort. The enterprise processes modeling are obtained with the usage of CIMOSA language and to the support information system it was used the UML language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente trabajo desarrollado en el Hospital Méderi es una asesoría sobre modelos de pronósticos la cual consiste en analizar una base de datos de mercancía almacenada en la bodega general, suministrada por la entidad, mediante cuatro tipos de pronósticos diferentes, Promedio Móvil Ponderado, Promedio Móvil simple, Regresión Lineal y Suavizamiento Exponencial. Teniendo en cuenta el resultado arrojado por cada uno de los pronósticos, se hace una recomendación al hospital diciendo cual pronóstico debería utilizar para predecir la demanda con mayor precisión.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included). This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study determined the current trends in supply, demand, and equilibrium (ie, the level of employment where supply equals demand) in the market for Certified Registered Nurse Anesthetists (CRNAs). It also forecasts future needs for CRNAs given different possible scenarios. The impact of the current availability of CRNAs, projected retirements, and changes in the demand for surgeries are considered in relation to CRNAs needed for the future. The study used data from many sources to estimate models associated with the supply and demand for CRNAs and the relationship to relevant community and policy characteristics such as per capita income of the community and managed care. These models were used to forecast changes in surgeries and in the supply of CRNAs in the future. The supply of CRNAs has increased in recent years, stimulated by shortages of CRNAs and subsequent increases in the number of CRNAs trained. However, the increases have not offset the number of retiring CRNAs to maintain a constant age in the CRNA population. The average age will continue to increase for CRNAs in the near future despite increases in CRNAs trained. The supply of CRNAs in relation to surgeries will increase in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to meet the ever growing demand for the prediction of oceanographic parametres in the Indian Ocean for a variety of applications, the Indian National Centre for Ocean Information Services (INCOIS) has recently set-up an operational ocean forecast system, viz. the Indian Ocean Forecast System (INDOFOS). This fully automated system, based on a state-of-the-art ocean general circulation model issues six-hourly forecasts of the sea-surface temperature, surface currents and depths of the mixed layer and the thermocline up to five-days of lead time. A brief account of INDOFOS and a statistical validation of the forecasts of these parametres using in situ and remote sensing data are presented in this article. The accuracy of the sea-surface temperature forecasts by the system is high in the Bay of Bengal and the Arabian Sea, whereas it is moderate in the equatorial Indian Ocean. On the other hand, the accuracy of the depth of the thermocline and the isothermal layers and surface current forecasts are higher near the equatorial region, while it is relatively lower in the Bay of Bengal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The case for energy policy modelling is strong in Ireland, where stringent EU climate targets are projected to be overshot by 2015. Policy targets aiming to deliver greenhouse gas and renewable energy targets have been made, but it is unclear what savings are to be achieved and from which sectors. Concurrently, the growth of personal mobility has caused an astonishing increase in CO2 emissions from private cars in Ireland, a 37% rise between 2000 and 2008, and while there have been improvements in the efficiency of car technology, there was no decrease in the energy intensity of the car fleet in the same period. This thesis increases the capacity for evidenced-based policymaking in Ireland by developing techno-economic transport energy models and using them to analyse historical trends and to project possible future scenarios. A central focus of this thesis is to understand the effect of the car fleet‘s evolving technical characteristics on energy demand. A car stock model is developed to analyse this question from three angles: Firstly, analysis of car registration and activity data between 2000 and 2008 examines the trends which brought about the surge in energy demand. Secondly, the car stock is modelled into the future and is used to populate a baseline “no new policy” scenario, looking at the impact of recent (2008-2011) policy and purchasing developments on projected energy demand and emissions. Thirdly, a range of technology efficiency, fuel switching and behavioural scenarios are developed up to 2025 in order to indicate the emissions abatement and renewable energy penetration potential from alternative policy packages. In particular, an ambitious car fleet electrification target for Ireland is examined. The car stock model‘s functionality is extended by linking it with other models: LEAP-Ireland, a bottom-up energy demand model for all energy sectors in the country; Irish TIMES, a linear optimisation energy system model; and COPERT, a pollution model. The methodology is also adapted to analyse trends in freight energy demand in a similar way. Finally, this thesis addresses the gap in the representation of travel behaviour in linear energy systems models. A novel methodology is developed and case studies for Ireland and California are presented using the TIMES model. Transport Energy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that "commodity currency" exchange rates have surprisingly robust power in predicting global commodity prices, both in-sample and out-of-sample, and against a variety of alternative benchmarks. This result is of particular interest to policy makers, given the lack of deep forward markets in many individual commodities, and broad aggregate commodity indices in particular. We also explore the reverse relationship (commodity prices forecasting exchange rates) but find it to be notably less robust. We offer a theoretical resolution, based on the fact that exchange rates are strongly forward-looking, whereas commodity price fluctuations are typically more sensitive to short-term demand imbalances. © 2010 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand response is assumed an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed aims the minimization of the operation costs in a smart grid operated by a virtual power player. It is especially useful when actual and day ahead wind forecast differ significantly. When facing lower wind power generation than expected, RTP is used in order to minimize the impacts of such wind availability change. The proposed model application is here illustrated using the scenario of a special wind availability reduction day in the Portuguese power system (8th February 2012).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the problems inherent within traditional supply chain management's forecast and inventory management processes arising when tackling demand driven supply chain. A demand driven supply chain management architecture developed by Orchestr8 Ltd., U.K. is described to demonstrate its advantages over traditional supply chain management. Within this architecture, a metrics reporting system is designed by adopting business intelligence technology that supports users for decision making and planning supply activities over supply chain health.