922 resultados para Forecast accuracy
Resumo:
The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.
Resumo:
Budget forecasts have become increasingly important as a tool of fiscal management to influence expectations of bond markets and the public at large. The inherent difficulty in projecting macroeconomic variables – together with political bias – thwart the accuracy of budget forecasts. We improve accuracy by combining the forecasts of both private and public agencies for Italy over the period 1993-2012. A weighted combined forecast of the deficit/ ratio is superior to any single forecast. Deficits are hard to predict due to shifting economic conditions and political events. We test and compare predictive accuracy over time and although a weighted combined forecast is robust to breaks, there is no significant improvement over a simple RW model.
Resumo:
Budget forecasts have become increasingly important as a tool of fiscal management to influence expectations of bond markets and the public at large. The inherent difficulty in projecting macroeconomic variables – together with political bias – thwart the accuracy of budget forecasts. We improve accuracy by combining the forecasts of both private and public agencies for Italy over the period 1993-2012. A weighted combined forecast of the deficit/ ratio is superior to any single forecast. Deficits are hard to predict due to shifting economic conditions and political events. We test and compare predictive accuracy over time and although a weighted combined forecast is robust to breaks, there is no significant improvement over a simple RW model.
Resumo:
Resumen tomado de la publicación
Resumo:
Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.
Resumo:
This paper assesses the influence of an adoption of IAS/IFRS or US GAAP on the financial analysts’ forecast accuracy in a homogenous institutional framework. Our findings suggest that the forecast accuracy is higher for estimates based on IFRS or US GAAP data than for forecasts based on German GAAP data.Moreover, in the year of switching from German GAAP to US GAAP the forecast accuracy is lower than in other years. The paper contributes to prior research by providing evidence about the usefulness of international accounting data and about the adoption effects of a change to such accounting principles.
Resumo:
We examine the predictive ability and consistency properties of exchange rate expectations for the dollar/euro using a survey conducted in Spain by PwC among a panel of experts and entrepreneurs. Our results suggest that the PwC panel have some forecasting ability for time horizons from 3 to 9 months, although only for the 3-month ahead expectations we obtain marginal evidence of unbiasedness and efficiency in the forecasts. As for the consistency properties of the exchange rate expectations formation process, we find that survey participants form stabilising expectations in the short-run and destabilising expectations in the long- run and that the expectation formation process is closer to fundamentalists than chartists.
Resumo:
This research concerns different statistical methods that assist to increase the demand forecasting accuracy of company X’s forecasting model. Current forecasting process was analyzed in details. As a result, graphical scheme of logical algorithm was developed. Based on the analysis of the algorithm and forecasting errors, all the potential directions for model future improvements in context of its accuracy were gathered into the complete list. Three improvement directions were chosen for further practical research, on their basis, three test models were created and verified. Novelty of this work lies in the methodological approach of the original analysis of the model, which identified its critical points, as well as the uniqueness of the developed test models. Results of the study formed the basis of the grant of the Government of St. Petersburg.
Resumo:
We compare and contrast the accuracy and uncertainty in forecasts of rents with those for a variety of macroeconomic series. The results show that in general forecasters tend to be marginally more accurate in the case of macro-economic series than with rents. In common across all of the series, forecasts tend to be smoothed with forecasters under-estimating performance during economic booms, and vice-versa in recessions We find that property forecasts are affected by economic uncertainty, as measured by disagreement across the macro-forecasters. Increased uncertainty leads to increased dispersion in the rental forecasts and a reduction in forecast accuracy.
Resumo:
Survey respondents who make point predictions and histogram forecasts of macro-variables reveal both how uncertain they believe the future to be, ex ante, as well as their ex post performance. Macroeconomic forecasters tend to be overconfident at horizons of a year or more, but overestimate (i.e., are underconfident regarding) the uncertainty surrounding their predictions at short horizons. Ex ante uncertainty remains at a high level compared to the ex post measure as the forecast horizon shortens. There is little evidence of a link between individuals’ ex post forecast accuracy and their ex ante subjective assessments.
Resumo:
This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data
Resumo:
This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown) 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio). However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística