999 resultados para Flutter analysis
Resumo:
The common practice in industry is to perform flutter analyses considering the generalized stiffness and mass matrices obtained from finite element method (FEM) and aerodynamic generalized force matrices obtained from a panel method, as the doublet lattice method. These analyses are often reperformed if significant differences are found in structural frequencies and damping ratios determined from ground vibration tests compared to FEM. This unavoidable rework can result in a lengthy and costly process of analysis during the aircraft development. In this context, this paper presents an approach to perform flutter analysis including uncertainties in natural frequencies and damping ratios. The main goal is to assure the nominal system’s stability considering these modal parameters varying in a limited range. The aeroelastic system is written as an affine parameter model and the robust stability is verified solving a Lyapunov function through linear matrix inequalities and convex optimization
Resumo:
Thanks to the increasing slenderness and lightness allowed by new construction techniques and materials, the effects of wind on structures became in the last decades a research field of great importance in Civil Engineering. Thanks to the advances in computers power, the numerical simulation of wind tunnel tests has became a valid complementary activity and an attractive alternative for the future. Due to its flexibility, during the last years, the computational approach gained importance with respect to the traditional experimental investigation. However, still today, the computational approach to fluid-structure interaction problems is not as widely adopted as it could be expected. The main reason for this lies in the difficulties encountered in the numerical simulation of the turbulent, unsteady flow conditions generally encountered around bluff bodies. This thesis aims at providing a guide to the numerical simulation of bridge deck aerodynamic and aeroelastic behaviour describing in detail the simulation strategies and setting guidelines useful for the interpretation of the results.
Resumo:
The present work describes an alternative methodology for identification of aeroelastic stability in a range of varying parameters. Analysis is performed in time domain based on Lyapunov stability and solved by convex optimization algorithms. The theory is outlined and simulations are carried out on a benchmark system to illustrate the method. The classical methodology with the analysis of the system's eigenvalues is presented for comparing the results and validating the approach. The aeroelastic model is represented in state space format and the unsteady aerodynamic forces are written in time domain using rational function approximation. The problem is formulated as a polytopic differential inclusion system and the conceptual idea can be used in two different applications. In the first application the method verifies the aeroelastic stability in a range of air density (or its equivalent altitude range). In the second one, the stability is verified for a rage of velocities. These analyses are in contrast to the classical discrete analysis performed at fixed air density/velocity values. It is shown that this method is efficient to identify stability regions in the flight envelope and it offers promise for robust flutter identification.
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Resumo:
This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and chaotic motion below the flutter speed are observed in this study.
Resumo:
Since the creation of supersonic vehicles, during the Second World War, the engineers have given special attention to the interaction between the aerodynamic efforts and the structures of the aircrafts due to a highly destructive phenomenon called flutter in aeronautical panel. Flutter in aeronautical panels is a self-excited aeroelastic phenomenon, which can occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, affecting significantly the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility of reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, very few of them are adapted to deal with the problem of estimating the flutter speeds of viscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. In this context, two different model of viscoelastic material are developed and applied to the model of sandwich plate by using finite elements. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.
Resumo:
Unmanned air vehicles (UAVs) and micro air vehicles (MAVs) constitute unique application platforms for vibration-based energy harvesting. Generating usable electrical energy during their mission has the important practical value of providing an additional energy source to run small electronic components. Electrical energy can be harvested from aeroelastic vibrations of lifting surfaces of UAVs and MAVs as they tend to have relatively flexible wings compared to their larger counterparts. In this work, an electromechanically coupled finite element model is combined with an unsteady aerodynamic model to develop a piezoaeroelastic model for airflow excitation of cantilevered plates representing wing-like structures. The electrical power output and the displacement of the wing tip are investigated for several airflow speeds and two different electrode configurations (continuous and segmented). Cancelation of electrical output occurs for typical coupled bending-torsion aeroelastic modes of a cantilevered generator wing when continuous electrodes are used. Torsional motions of the coupled modes become relatively significant when segmented electrodes are used, improving the broadband performance and altering the flutter speed. Although the focus is placed on the electrical power that can be harvested for a given airflow speed, shunt damping effect of piezoelectric power generation is also investigated for both electrode configurations.
Resumo:
Most of the established procedures for analysis of aeroelastic flutter in the development of aircraft are based on frequency domain methods. Proposing new methodologies in this field is always a challenge, because the new methods need to be validated by many experimental procedures. With the interest for new flight control systems and nonlinear behavior of aeroelastic structures, other strategies may be necessary to complete the analysis of such systems. If the aeroelastic model can be written in time domain, using state-space formulation, for instance, then many of the tools used in stability analysis of dynamic systems may be used to help providing an insight into the aeroelastic phenomenon. In this respect, this paper presents a discussion on the use of Gramian matrices to determine conditions of aeroelastic flutter. The main goal of this work is to introduce how observability gramian matrix can be used to identify the system instability. To explain the approach, the theory is outlined and simulations are carried out on two benchmark problems. Results are compared with classical methods to validate the approach and a reduction of computational time is obtained for the second example. © 2013 Douglas Domingues Bueno et al.
Resumo:
This paper presents a new methodology to analyze aeroelastic stability in a continuous range of flight envelope with varying parameter of velocity and altitude. The focus of the paper is to demonstrate that linear matrix inequalities can be used to evaluate the aeroelastic stability in a region of flight envelope instead of a single point, like classical methods. The proposed methodology can also be used to study if a system remains stable during an arbitrary motion from one point to another in the flight envelope, i.e., when the problem becomes time-variant. The main idea is to represent the system as a polytopic differential inclusion system using rational function approximation to write the model in time domain. The theory is outlined and simulations are carried out on the benchmark AGARD 445.6 wing to demonstrate the method. The classical pk-method is used for comparing results and validating the approach. It is shown that this method is efficient to identify stability regions in the flight envelope. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Es bien conocido que las pequeñas imperfecciones existentes en los álabes de un rótor de turbomaquinaria (conocidas como “mistuning”) pueden causar un aumento considerable de la amplitud de vibración de la respuesta forzada y, por el contrario, tienen típicamente un efecto beneficioso en el flameo del rótor. Para entender estos efectos se pueden llevar a cabo estudios numéricos del problema aeroelástico completo. Sin embargo, el cálculo de “mistuning” usando modelos de alta resolución es una tarea difícil de realizar, ya que los modelos necesarios para describir de manera precisa el componente de turbomáquina (por ejemplo rotor) tienen, necesariamente, un número muy elevado de grados de libertad, y, además, es necesario hacer un estudio estadístico para poder explorar apropiadamente las distribuciones posibles de “mistuning”, que tienen una naturaleza aleatoria. Diferentes modelos de orden reducido han sido desarrollados en los últimos años para superar este inconveniente. Uno de estos modelos, llamado “Asymptotic Mistuning Model (AMM)”, se deriva de la formulación completa usando técnicas de perturbaciones que se basan en que el “mistuning” es pequeño. El AMM retiene sólo los modos relevantes para describir el efecto del mistuning, y permite identificar los mecanismos clave involucrados en la amplificación de la respuesta forzada y en la estabilización del flameo. En este trabajo, el AMM se usa para estudiar el efecto del “mistuning” de la estructura y de la amortiguación sobre la amplitud de la respuesta forzada. Los resultados obtenidos son validados usando modelos simplificados del rotor y también otros de alta definición. Además, en el marco del proyecto europeo FP7 "Flutter-Free Turbomachinery Blades (FUTURE)", el AMM se aplica para diseñar distribuciones de “mistuning” intencional: (i) una que anula y (ii) otra que reduce a la mitad la amplitud del flameo de un rotor inestable; y las distribuciones obtenidas se validan experimentalmente. Por último, la capacidad de AMM para predecir el comportamiento de flameo de rotores con “mistuning” se comprueba usando resultados de CFD detallados. Abstract It is well known that the small imperfections of the individual blades in a turbomachinery rotor (known as “mistuning”) can cause a substantial increase of the forced response vibration amplitude, and it also typically results in an improvement of the flutter vibration characteristics of the rotor. The understanding of these phenomena can be attempted just by performing numerical simulations of the complete aeroelastic problem. However, the computation of mistuning cases using high fidelity models is a formidable task, because a detailed model of the whole rotor has to be considered, and a statistical study has to be carried out in order to properly explore the effect of the random mistuning distributions. Many reduced order models have been developed in recent years to overcome this barrier. One of these models, called the Asymptotic Mistuning Model (AMM), is systematically derived from the complete bladed disk formulation using a consistent perturbative procedure that exploits the smallness of mistuning to simplify the problem. The AMM retains only the essential system modes that are involved in the mistuning effect, and it allows to identify the key mechanisms of the amplification of the forced response amplitude and the flutter stabilization. In this work, AMM methodolgy is used to study the effect of structural and damping mistuning on the forced response vibration amplitude. The obtained results are verified using a one degree of freedom model of a rotor, and also high fidelity models of the complete rotor. The AMM is also applied, in the frame of the European FP7 project “Flutter-Free Turbomachinery Blades (FUTURE)”, to design two intentional mistuning patterns: (i) one to complete stabilize an unstable rotor, and (ii) other to approximately reduce by half its flutter amplitude. The designed patterns are validated experimentally. Finally, the ability of AMM to predict the flutter behavior of mistuned rotors is checked against numerical, high fidelity CFD results.
Resumo:
A new study on suspension bridges has been prompted by the big disaster of the Tacoma Narrow Bridge at half its design speed. The aerodynamic instability of long-span bridges has been studied using wind tunnel tests. As a result of improved aerodynamic performance from the geometrical configuration of the bridge deck, the aerodynamic criteria for suspension and cable-stayed bridges have become well established in recent years, thereby allowing longer bridge spans to be developed. Although the Messina Strait Bridge has yet to be constructed, we are looking forward to evaluating the impact of different deck cross-sections on both aerodynamic stability and cost reduction. To further improve the aerodynamic characteristics of long-span suspension bridges, an optimized multi-box bridge deck model with two side decks for traffic lanes, two middle railway decks, and three gaps separating them has been proposed aerodynamic performance has been experimentally verified. 1:80 scale wind tunnel tests have been conducted. According to the current MIDAS Model, the first torsional and the first vertical frequency ratios are 1.27787 and 1.36[1] respectively. It is the torsional/vertical frequency ratio, combined with the deck aerodynamic properties, that determines the wind response properties of the bridge for the most dangerous possible form of aeroelastic instability. The classic flutter is caused by the coupling of torsional and vertical modes. Stabilizing cables to the deck could be a solution to this classic flutter by reducing lateral displacement of the deck and increasing frequency ratios. Stabilizing cables will be installed on the deck in three different orientations: vertical, inclined, and horizontal, with diameters of 80 cm, 60 cm, and 40 cm in each orientation respectively. An overview of the research undertaken on this topic will be presented, as well as the most important findings.
Resumo:
The Fourier transform-infrared (FT-IR) signature of dry samples of DNA and DNA-polypeptide complexes, as studied by IR microspectroscopy using a diamond attenuated total reflection (ATR) objective, has revealed important discriminatory characteristics relative to the PO2(-) vibrational stretchings. However, DNA IR marks that provide information on the sample's richness in hydrogen bonds have not been resolved in the spectral profiles obtained with this objective. Here we investigated the performance of an all reflecting objective (ARO) for analysis of the FT-IR signal of hydrogen bonds in DNA samples differing in base richness types (salmon testis vs calf thymus). The results obtained using the ARO indicate prominent band peaks at the spectral region representative of the vibration of nitrogenous base hydrogen bonds and of NH and NH2 groups. The band areas at this spectral region differ in agreement with the DNA base richness type when using the ARO. A peak assigned to adenine was more evident in the AT-rich salmon DNA using either the ARO or the ATR objective. It is concluded that, for the discrimination of DNA IR hydrogen bond vibrations associated with varying base type proportions, the use of an ARO is recommended.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
Current guidelines have advised against the performance of (131)I-iodide diagnostic whole body scintigraphy (dxWBS) to minimize the occurrence of stunning, and to guarantee the efficiency of radioiodine therapy (RIT). The aim of the study was to evaluate the impact of stunning on the efficacy of RIT and disease outcome. This retrospective analysis included 208 patients with differentiated thyroid cancer managed according to a same protocol and followed up for 12-159 months (mean 30 ± 69 months). Patients received RIT in doses ranging from 3,700 to 11,100 MBq (100 mCi to 300 mCi). Post-RIT-whole body scintigraphy images were performed 10 days after RIT in all patients. In addition, images were also performed 24-48 hours after therapy in 22 patients. Outcome was classified as no evidence of disease (NED), stable disease (SD) and progressive disease (PD). Thyroid stunning occurred in 40 patients (19.2%), including 26 patients with NED and 14 patients with SD. A multivariate analysis showed no association between disease outcome and the occurrence of stunning (p = 0.3476). The efficacy of RIT and disease outcome do not seem to be related to thyroid stunning.