916 resultados para Fluorescent conjugation
Resumo:
La cartographie peptidique est une méthode qui permet entre autre d’identifier les modifications post-traductionnelles des protéines. Elle comprend trois étapes : 1) la protéolyse enzymatique, 2) la séparation par électrophorèse capillaire (CE) ou chromatographie en phase liquide à haute performance (HPLC) des fragments peptidiques et 3) l’identification de ces derniers. Cette dernière étape peut se faire par des méthodes photométriques ou par spectrométrie de masse (MS). Au cours de la dernière décennie, les enzymes protéolytiques immobilisées ont acquis une grande popularité parce qu’elles peuvent être réutilisées et permettent une digestion rapide des protéines due à un rapport élevé d’enzyme/substrat. Pour étudier les nouvelles techniques d’immobilisation qui ont été développées dans le laboratoire du Professeur Waldron, la cartographie peptidique par CE est souvent utilisée pour déterminer le nombre total de peptides détectés et leurs abondances. La CE nous permet d’avoir des séparations très efficaces et lorsque couplée à la fluorescence induite par laser (LIF), elle donne des limites de détection qui sont 1000 fois plus basses que celles obtenues avec l’absorbance UV-Vis. Dans la méthode typique, les peptides venant de l’étape 1) sont marqués avec un fluorophore avant l’analyse par CE-LIF. Bien que la sensibilité de détection LIF puisse approcher 10-12 M pour un fluorophore, la réaction de marquage nécessite un analyte dont la concentration est d’au moins 10-7 M, ce qui représente son principal désavantage. Donc, il n’est pas facile d’étudier les enzymes des peptides dérivés après la protéolyse en utilisant la technique CE-LIF si la concentration du substrat protéique initial est inférieure à 10-7 M. Ceci est attribué à la dilution supplémentaire lors de la protéolyse. Alors, afin d’utiliser le CE-LIF pour évaluer l’efficacité de la digestion par enzyme immobilisée à faible concentration de substrat,nous proposons d’utiliser des substrats protéiques marqués de fluorophores pouvant être purifiés et dilués. Trois méthodes de marquage fluorescent de protéine sont décrites dans ce mémoire pour étudier les enzymes solubles et immobilisées. Les fluorophores étudiés pour le marquage de protéine standard incluent le naphtalène-2,3-dicarboxaldéhyde (NDA), la fluorescéine-5-isothiocyanate (FITC) et l’ester de 6-carboxyfluorescéine N-succinimidyl (FAMSE). Le FAMSE est un excellent réactif puisqu’il se conjugue rapidement avec les amines primaires des peptides. Aussi, le substrat marqué est stable dans le temps. Les protéines étudiées étaient l’-lactalbumine (LACT), l’anhydrase carbonique (CA) et l’insuline chaîne B (INB). Les protéines sont digérées à l’aide de la trypsine (T), la chymotrypsine (CT) ou la pepsine (PEP) dans leurs formes solubles ou insolubles. La forme soluble est plus active que celle immobilisée. Cela nous a permis de vérifier que les protéines marquées sont encore reconnues par chaque enzyme. Nous avons comparé les digestions des protéines par différentes enzymes telles la chymotrypsine libre (i.e., soluble), la chymotrypsine immobilisée (i.e., insoluble) par réticulation avec le glutaraldéhyde (GACT) et la chymotrypsine immobilisée sur billes d’agarose en gel (GELCT). Cette dernière était disponible sur le marché. Selon la chymotrypsine utilisée, nos études ont démontré que les cartes peptidiques avaient des différences significatives selon le nombre de pics et leurs intensités correspondantes. De plus, ces études nous ont permis de constater que les digestions effectuées avec l’enzyme immobilisée avaient une bonne reproductibilité. Plusieurs paramètres quantitatifs ont été étudiés afin d’évaluer l’efficacité des méthodes développées. La limite de détection par CE-LIF obtenue était de 3,010-10 M (S/N = 2,7) pour la CA-FAM digérée par GACT et de 2,010-10 M (S/N = 4,3) pour la CA-FAM digérée par la chymotrypsine libre. Nos études ont aussi démontrées que la courbe d’étalonnage était linéaire dans la région de travail (1,0×10-9-1,0×10-6 M) avec un coefficient de corrélation (R2) de 0,9991.
Resumo:
Three pi-electron rich fluorescent supramolecular polymers (1-3) have been synthesized incorporating 2-methyl-3-butyn-2-ol groups in reasonable yield by employing Sonagashira coupling. They were characterized by multinuclear NMR (H-1, C-13), ESI-MS and single crystal X-ray diffraction analyses 1 = 1( 2-methyl-3-butyn-2-ol) pyrene; 2 = 9,10-bis(2-methyl-3-butyn-2-ol) anthracene; 3 = 1,3,6,8-tetrakis(2methyl- 3-butyn-2-ol) pyrene]. Single crystal structures of 1-3 indicated that the incorporation of hydroxy (-OH) groups on the peripheral of the fluorophores helps them to self-associate into an infinite supramolecular polymeric network via intermolecular hydrogen bonding interactions between the adjacent discrete fluorophore units. All these compounds showed fluorescence characteristics in chloroform solution due to the extended pi-conjugation and were used as selective fluorescent sensors for the detection of electron deficient nitroaromatics. The changes in photophysical properties of fluorophores (1-3) upon complex formation with electron deficient nitroaromatic explosives were studied in chloroform solution by using fluorescence spectroscopy. All these fluorophores showed the largest quenching response with moderate selectivity for nitroaromatics over various other electron deficient/ rich aromatic compounds tested (Chart 1). Analysis of the fluorescence titration profile of 9,10-bis(2-methyl-3butyn- 2-ol) anthracene fluorophore (2) with 1,3,5-trinitrotoluene/ 2,4-dinitrotoluene provided evidence that this particular fluorophore detects nitroaromatics in the nanomolar range 2.0 ppb for TNT, 13.7 ppb for DNT]. Moreover, sharp visual color change was observed upon mixing nitroaromatic (DNT) with fluorophores (1-3) both in solution as well as in solid phase. Furthermore, the vapor-phase sensing study of thin film of fluorophores (1-3) showed efficient quenching responses for DNT and this sensing process is reproducible. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics make these tested fluorophores (1-3) as potential sensors for nitroaromatic compounds with a detection limit of ppb level.
Resumo:
The pH dependencies of the UV-vis and fluorescent spectra of new water-soluble dendritic porphyrins and tetrabenzoporphyrins were studied. Because of extended pi-conjugation and nonplanar distortion, the absorption and the emission bands of tetraaryltetrabenzoporphyrins (Ar4TBP) are red-shifted and do not overlap with those of regular tetraarylporphyrins (Ar4P). When encapsulated inside dendrimers with hydrophilic outer layers, Ar(4)Ps and Ar(4)TBPs become water soluble and can serve as pH indicators, with pKs adjustable by the peripheral charges on the dendrimers. Two new dendritic porphyrins, Gen 4 polyglutamic porphyrin dendrimer H2P-Glu(4)OH (1) with 64 peripheral carboxylates and Gen 1 poly(ester amide) Newkome-type tetrabenzoporphyrin dendrimer H2TBP-Nw(1)OH (2) with 36 peripheral carboxylates, were synthesized and characterized. The pKs of the encapsulated porphyrins (pK(H2P-Glu)(OH)(4) = 6.2 and pK(H2TBP)-Nw(1)OH = 6.3) were found to be strongly influenced by the dendrimers, revealing significant electrostatic shielding of the cores by the peripheral charges. The titration curves obtained by differential excitation using the mixtures of the dendrimers were shown to be identical to those determined for the dendrimers individually. Due to their peripheral carboxylates and nanometric molecular size, porphyrin dendrimers cannot penetrate through phospholipid membranes. Dendrimer 1 was captured inside phospholipid liposomes, which were suspended in a solution containing dendrimer 2. No response from 1 was detected upon pH changes in the bulk solution, while the response from 2 was predictably strong. When proton channels were created in the liposome walls, both compounds responded equally to the bulk pH changes. These results suggest that porphyrin dendrimers can be used as fluorescent pH indicators for proton gradient measurements.
Resumo:
BODIPY (4,4-Difluoro-3a,4a-diaza-s-indacene) dyes have gained lots of attention in application of fluorescence sensing and imaging in recent years because they possess many distinctive and desirable properties such as high extinction coefficient, narrow absorption and emission bands, high quantum yield and low photobleaching effect. However, most of BODIPY-based fluorescent probes have very poor solubilities in aqueous solution, emit less than 650 nm fluorescence that can cause cell and tissue photodamages compared with bio-desirable near infrared (650-900 nm) light. These undesirable properties extremely limit the applications of BODIPY-based fluorescent probes in sensing and imaging applications. In order to overcome these drawbacks, we have developed a very effective strategy to prepare a series of neutral highly water- soluble BODIPY dyes by enhancing the water solubilities of BODIPY dyes via incorporation of tri(ethylene glycol)methyl ether (TEG) and branched oligo(ethylene glycol)methyl ether (BEG) residues onto BODIPY dyes at 1,7-, 2,6-, 3,5-, 4- and meso- positions. We also have effectively tuned absorptions and emissions of BOIDPY dyes to red, deep red and near infrared regions via significant extension of π-conjugation of BODIPY dyes by condensation reactions of aromatic aldehydes with 2,6-diformyl BODIPY dyes at 1,3,5,7-positions. Based on the foundation that we built for enhancing water solubility and tuning wavelength, we have designed and developed a series of water-soluble, BODIPY-based fluorescent probes for sensitive and selective sensing and imaging of cyanide, Zn (II) ions, lysosomal pH and cancer cells. We have developed three BODIPY-based fluorescent probes for sensing of cyanide ions by incorporating indolium moieties onto the 6-position of TEG- or BEG-modified BOIDPY dyes. Two of them are highly water-soluble. These fluorescent probes showed selective and fast ratiometric fluorescent responses to cyanide ions with a dramatic fluorescence color change from red to green accompanying a significant increase in fluorescent intensity. The detection limit was measured as 0.5 mM of cyanide ions. We also have prepared three highly water-soluble fluorescent probes for sensing of Zn (II) ions by introducing dipicoylamine (DPA, Zn ion chelator) onto 2- and/or 6-positions of BEG-modified BODIPY dyes. These probes showed selective and sensitive responses to Zn (II) ion in the range from 0.5 mM to 24 mM in aqueous solution at pH 7.0. Particularly, one of the probes displayed ratiometric responses to Zn (II) ions with fluorescence quenching at 661 nm and fluorescence enhancement at 521 nm. This probe has been successfully applied to the detection of intracellular Zn (II) ions inside the living cells. Then, we have further developed three acidotropic, near infrared emissive BODIPY- based fluorescent probes for detection of lysosomal pH by incorporating piperazine moiety at 3,5-positions of TEG- or BEG-modified BODIPY dyes as parts of conjugation. The probes have low auto-fluorescence at physiological neutral condition while their fluorescence intensities will significant increase at 715 nm when pH shift to acidic condition. These three probes have been successfully applied to the in vitro imaging of lysosomes inside two types of living cells. At the end, we have synthesized one water- soluble, near infrared emissive cancer cell targetable BODIPY-based fluorescent polymer bearing cancer homing peptide (cRGD) residues for cancer cell imaging applications. This polymer exhibited excellent water-solubility, near infrared emission (712 nm), good biocompatibility. It also showed low nonspecific interactions to normal endothelial cells and can effectively detect breast tumor cells.
Resumo:
Conjugated polymers (CPs) are intrinsically fluorescent materials that have been used for various biological applications including imaging, sensing, and delivery of biologically active substances. The synthetic control over flexibility and biodegradability of these materials aids the understanding of the structure-function relationships among the photophysical properties, the self-assembly behaviors of the corresponding conjugated polymer nanoparticles (CPNs), and the cellular behaviors of CPNs, such as toxicity, cellular uptake mechanisms, and sub-cellular localization patterns. Synthetic approaches towards two classes of flexible CPs with well-preserved fluorescent properties are described. The synthesis of flexible poly(p-phenylenebutadiynylene)s (PPBs) uses competing Sonogashira and Glaser coupling reactions and the differences in monomer reactivity to incorporate a small amount (~10%) of flexible, non-conjugated linkers into the backbone. The reaction conditions provide limited control over the proportion of flexible monomer incorporation. Improved synthetic control was achieved in a series of flexible poly(p-phenyleneethynylene)s (PPEs) using modified Sonogashira conditions. In addition to controlling the degree of flexibility, the linker provides disruption of backbone conjugation that offers control of the length of conjugated segments within the polymer chain. Therefore, such control also results in the modulation of the photophysical properties of the materials. CPNs fabricated from flexible PPBs are non-toxic to cells, and exhibit subcellular localization patterns clearly different from those observed with non-flexible PPE CPNs. The subcellular localization patterns of the flexible PPEs have not yet been determined, due to the toxicity of the materials, most likely related to the side-chain structure used in this series. The study of the effect of CP flexibility on self-assembly reorganization upon polyanion complexation is presented. Owing to its high rigidity and hydrophobicity, the PPB backbone undergoes reorganization more readily than PPE. The effects are enhanced in the presence of the flexible linker, which enables more efficient π-π stacking of the aromatic backbone segments. Flexibility has minimal effects on the self-assembly of PPEs. Understanding the role of flexibility on the biophysical behaviors of CPNs is key to the successful development of novel efficient fluorescent therapeutic delivery vehicles.
Resumo:
Conjugated polymers (CPs) are intrinsically fluorescent materials that have been used for various biological applications including imaging, sensing, and delivery of biologically active substances. The synthetic control over flexibility and biodegradability of these materials aids the understanding of the structure-function relationships among the photophysical properties, the self-assembly behaviors of the corresponding conjugated polymer nanoparticles (CPNs), and the cellular behaviors of CPNs, such as toxicity, cellular uptake mechanisms, and sub-cellular localization patterns. ^ Synthetic approaches towards two classes of flexible CPs with well-preserved fluorescent properties are described. The synthesis of flexible poly( p-phenylenebutadiynylene)s (PPBs) uses competing Sonogashira and Glaser coupling reactions and the differences in monomer reactivity to incorporate a small amount (∼10%) of flexible, non-conjugated linkers into the backbone. The reaction conditions provide limited control over the proportion of flexible monomer incorporation. Improved synthetic control was achieved in a series of flexible poly(p-phenyleneethynylene)s (PPEs) using modified Sonogashira conditions. In addition to controlling the degree of flexibility, the linker provides disruption of backbone conjugation that offers control of the length of conjugated segments within the polymer chain. Therefore, such control also results in the modulation of the photophysical properties of the materials. ^ CPNs fabricated from flexible PPBs are non-toxic to cells, and exhibit subcellular localization patterns clearly different from those observed with non-flexible PPE CPNs. The subcellular localization patterns of the flexible PPEs have not yet been determined, due to the toxicity of the materials, most likely related to the side-chain structure used in this series. ^ The study of the effect of CP flexibility on self-assembly reorganization upon polyanion complexation is presented. Owing to its high rigidity and hydrophobicity, the PPB backbone undergoes reorganization more readily than PPE. The effects are enhanced in the presence of the flexible linker, which enables more efficient π-π stacking of the aromatic backbone segments. Flexibility has minimal effects on the self-assembly of PPEs. Understanding the role of flexibility on the biophysical behaviors of CPNs is key to the successful development of novel efficient fluorescent therapeutic delivery vehicles.^
Resumo:
We report the photoinduced conjugation of polymers synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization with a number of low molecular weight (functional) olefins. Upon irradiation of a solution of an aliphatic alkene and the benzyl dithioacetic acid ester (CPDA) or dodecyl trithiocarbonate (DoPAT) functional poly(alkyl acrylate) at the absorption wavelength of the thiocarbonyl group (315 nm), incorporation of the alkene at the polymer chain-end occurred. The most efficient systems identified with regard to the rate of reaction and yield were poly(butyl acrylate)/CPDA/ethyl vinyl ether (78% monoinsertion product after 1 h) and poly(butyl acrylate)/CPDA/1-pentene (73% insertion product after 7 h) at ambient temperature. An in-depth analysis of the reaction mechanism by 1H NMR and online size-exclusion chromatography-electrospray ionization tandem mass spectrometry (SEC/ESI−MSn) revealed that a possible [2 + 2] photoaddition mechanism of conjugation does not take place. Instead, fast β-cleavage of the photoexcited RAFT-end group with subsequent radical addition of an alkene was observed for all employed systems. The presented reaction thus provides a means of spatial and temporal control for the conjugation of alkenes to thiocarbonyl thio-capped macromolecules via the use of UV radiation.
Resumo:
The nitrile imine-mediated tetrazole-ene cycloaddition reaction (NITEC) is introduced as a powerful and versatile conjugation tool to covalently ligate macromolecules onto variable (bio)surfaces. The NITEC approach is initiated by UV irradiation and proceeds rapidly at ambient temperature yielding a highly fluorescent linkage. Initially, the formation of block copolymers by the NITEC methodology is studied to evidence its efficacy as a macromolecular conjugation tool. The grafting of polymers onto inorganic (silicon) and bioorganic (cellulose) surfaces is subsequently carried out employing the optimized reaction conditions obtained from the macromolecular ligation experiments and evidenced by surface characterization techniques, including X-ray photoelectron spectroscopy and FT-IR microscopy. In addition, the patterned immobilization of variable polymer chains onto profluorescent cellulose is achieved through a simple masking process during the irradiation. Photoinduced nitrile imine-alkene 1,3-dipolar cycloaddition (NITEC) is employed to covalently bind well-defined polymers onto silicon oxide or cellulose. A diaryl tetrazole-functionalized molecule is grafted via silanization or amidification, respectively. Under UV light, a reactive nitrile imine rapidly forms and reacts with maleimide-functionalized polymers yielding a fluorescent linkage. Via a masking method, polymeric fluorescent patterns are achieved.
Resumo:
Tailor-made water-soluble macromolecules, including a glycopolymer, obtained by living/controlled RAFT-mediated polymerization are demonstrated to react in water with diene-functionalized poly(ethylene glycol)s without pre- or post-functionalization steps or the need for a catalyst at ambient temperature. As previously observed in organic solvents, hetero-Diels-Alder (HDA) conjugations reached quantitative conversion within minutes when cyclopentadienyl moieties were involved. However, while catalysts and elevated temperatures were previously necessary for open-chain diene conjugation, additive-free HDA cycloadditions occur in water within a few hours at ambient temperature. Experimental evidence for efficient conjugations is provided via unambiguous ESI-MS, UV/vis, NMR, and SEC data.
Resumo:
Class E Resonant Inverters are theoretically capable of delivering any power to a load and achieve 100% efficiency at any frequency of operation. In practice efficiency in the “high 90's” can be achieved into megahertz frequencies regardless of inverter output powers. The topology also allows the manipulation of output power through sub-optimal operation, with a negligible efficiency penalty. The 24W inverter discussed in this paper was specifically designed to harness the benefits, and discuss the shortcomings, of the Class E topology for use in the growing market for portable, battery powered lighting. It exhibits a peak recorded power efficiently of over 98%, and a conservatively measured efficiency of 95% across a range of dimming settings.
Resumo:
The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.
Resumo:
Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.
Resumo:
Organic light emitting diodes (OLEDs), as an emerging technology for display and solid state lighting application, have many advantages including self-emission, lightweight, flexibility, low driving voltage, low power consumption, and low production cost. With the advancement of light emitting materials development and device architecture optimization, mobile phones and televisions based on OLED technology are already in the market. However, to obtain efficient, stable and pure blue emission than producing lower-energy colors is still one of the important subjects of these challenges. Full color and pure white light can be achieved only having stable blue emitting materials. To address this issue, significant effort has been devoted to develop novel blue light emitting materials in the past decade aiming at further improving device efficiency, color quality of emission light, and device lifetime. This review focuses on recent efforts of synthesis and device performance of small molecules, oligomers and polymers for blue emission of organic electroluminescent devices.